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Rare events in the climate system
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- Climate extremes or rare transitions: studies hindered by three problems
|) lack of observational data

2) poor sampling with numerical models due to high computational costs
3) reliability of numerical models



Rare events in the climate system
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- Climate extremes or rare transitions: studies hindered by three problems

|) lack of observational data
2) poor sampling with numerical models due to high computational costs
3) reliability of numerical models

- Attempt at solving problem 2: improve sampling efficiency with rare event algorithms



Rare event algorithms

Bouchet, Rolland, Simonnet, Phys. Rev. Lett. 2019

Computational techniques to guide numerical
models to oversample rare dynamical paths

Long history in statistical physics, recently
ported to geophysical and climate problems

1 branched on 2
- Different methods for different applications

Q1 < Q9 < Q3



Rare event algorithm and importance sampling

Importance sampling
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- Importance sampling: make rare events common



Rare event algorithm and importance sampling

Online trajectory selection Importance sampling
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Figure from Wouters et al 2023

- Importance sampling: make rare events common

- Ensemble simulations with numerical model + genetic algorithm

- Define observable of interest, e.g. surface temperature over region. Every constant
intervals of resampling time 7 the trajectories are killed or cloned, based on weights that
measure the likelihood to develop an extreme for the target observable



Rare event algorithm and importance sampling

Online trajectory selection Importance sampling
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- Importance sampling: make rare events common

- Ensemble simulations with numerical model + genetic algorithm

- Define observable of interest, e.g. surface temperature over region. Every constant
intervals of resampling time 7 the trajectories are killed or cloned, based on weights that
measure the likelihood to develop an extreme for the target observable

- Resampling rules adapted from Del Moral and Garnier (2005); Giardina et al. (201 I),
method is efficient to study long lasting events (Ragone et al. 2018)



Rare event algorithm and importance sampling

Online trajectory selection Importance sampling
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- Run N trajectories X(#) (j = 1,..,N) for total simulation time 7,

Each trajectory generates at time f; = i7 (i = 1,..,7,/7) a number of copies of itself
given by weights

oKl X D)t

wj(tl-) = 7

l

1 N
’ Zi — N Z W](tl)
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with f(X(t)) observable of interest, k control parameter.



Rare event algorithm and importance sampling

Online trajectory selection Importance sampling
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- Importance sampling of trajectories: probability of dynamical paths modified as
ok o f(X(@)dr

Z

P (X)) = P, (X))

- Trajectories with large values of time average of observable are much more likely to occur

- Reduces statistical errors and generates ultra-rare events: conditional statistics on rare
events estimated much more precisely (composites, return times, correlations...)



Rare event algorithm and importance sampling

- Applications:

European heatwaves in Plasim (intermediate complexity GCM)

France and Scandinavia heatwaves in CESM 1.2

Arctic sea ice reduction in coupled Plasim-LSG

AMOC weakening and collapse in coupled Plasim-LSG



Rare event algorithm and importance sampling

- Applications:

- European heatwaves in Plasim (intermediate complexity GCM)

- France and Scandinavia heatwaves in CESM|.2



Heatwaves
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- Persistent anticyclonic conditions (blockings) lead to surface warming due to subsidence
and enhanced shortwave radiation fluxes, plus feedbacks (e.g. soil moisture feedback)

- Class of extreme events characterised by time persistence of quantity/dynamics



Experiments with climate model Plasim

selected area

Key features
portable
fast
¢ open source
Seeas parallel
thermodynamic modular
easy to use
documented Yo
compatible —

Model Starter
and
Graphic User Interface

Intermediate complexity climate model Plasim, T42 horizontal resolution (64x128), 10
vertical layers, order 10¢degrees of freedom.

Prescribed sea surface temperature in perpetual summer setup

Target: European surface temperature averaged on subeasonal/seasonal time scales

Resampling time 8 days



Heatwaves and warm summers in Plasim

Summer temperature anomalies
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- Importance sampling of 90-days European heatwaves



Heatwaves and warm summers in Plasim

Summer temperature anomalies Return times
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- Importance sampling of 90-days European heatwaves

- Allows to compute return times up to 106 years with computational cost of 103 years



Heatwaves and warm summers in Plasim

Summer temperature anomalies
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- Importance sampling of 90-days European heatwaves
- Allows to compute return times up to 106 years with computational cost of 103 years

- ldentification of teleconnection patterns for strongest heatwaves



Heatwaves and warm summers

in Plasim

Composite heatwaves r>1000 years

Latitude ° N

Latitude ° N

Latitude * N

Longitude ° E

Longitude ® E
3-150 15 3 45 6 -4 -3

0 1 2 3 4
Temperature anomaly (K)

Stefanon et al. 2012 Ragone, Wouters, Bouchet. PNAS 2018

- Pattern broadly similar to Scandinavian heatwave cluster in observations



Heatwaves and warm summers in Plasim

July 2018 heatwave (NCEP) Composite heatwaves r>1000 years
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Ragone, Wouters, Bouchet. PNAS 2018

- Pattern broadly similar to Scandinavian heatwave cluster in observations

- And to July 2018 heatwave



Heatwaves and warm summers in Plasim

Control spectrum
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Teleconnections associated with anomalous planetary wave activity

Hayashi spectra: space-time spectral analysis of gph averaged between 30 and 75 °N

Eastward propagating waves spectrum shows low wavenumber “slow” structure

Amplification of quasi-stationary planetary waves! (e.g. Petoukhov et al., PNAS 2016)
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Heatwaves and warm summers in Plasim

JJA 2018 spectrum from NCEP data Heat waves spectrum
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- Similar results for summer 2018: heat waves in Scandinavia, Japan and Canada

- Open discussion on role of wavenumber 7 structure for this event (Kornhuber & al.,
ERL 2019), lower wavenumbers for Alberta wildfires 2016, Russian heat waves and
Pakistan floods 2010, and several other events... we can provide needed statistics!



Experiments with climate model CESM
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- Same experiments with CESM 1.2, still prescribed SST but higher resolution (1° horizontal,
26 vertical levels), much more complex physics

- Two sets of 10 experiments targeting temperature over France or Scandinavia

- Each experiment ensemble 100 trajectories running for one summer (JJA), 25 yers
equivalent computational cost. Total per region 250 years (doable with limited resources)



Experiments with CESM: heatwaves over France

France warm summers r>1000 years return time summer temperature France
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- Results confirmed: we can work with state-of-the-art global climate models

- Detected statistically significant teleconnection patterns with wavenumber 3-4



Experiments with CESM: heatwaves over Scandinavia

Scandinavia warm summers r>1000 years return time summer temperature Scandinavia
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- Results confirmed: we can work with state-of-the-art global climate models

- Detected statistically significant teleconnection patterns with wavenumber 3-4



Experiments with CESM: heatwaves over Scandinavia

Ragone and Bouchet, GRL 202 | 4 3 5 1 0 1 2 3 a
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- Results confirmed: we can work with state-of-the-art global climate models
- Detected statistically significant teleconnection patterns with wavenumber 3-4

- Scandinavia pattern matches extremely well with observed 2018 event



Experiments with CESM: heatwaves over Scandinavia
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- Results confirmed: we can work with state-of-the-art global climate models

- Detected statistically significant teleconnection patterns with wavenumber 3-4

- Scandinavia pattern matches extremely well with observed 2018 event
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Experiments with CESM: heatwaves over Scandinavia
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- For Scandinavia unexpected behaviour
- Bimodality distribution seasonal temperatures
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Rare event algorithm and importance sampling

- Applications:

- Arctic sea ice reduction in coupled Plasim-LSG



Arctic sea ice reduction in Plasm-LSG
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Arctic sea ice reduction extremes, Jerome Sauer (PhD UCLouvain), Francois Massonnet,
Giuseppe Zappa, Jonathan Demaeyer



Arctic sea ice reduction in Plasm-LSG
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- Simulations with Plasim coupled to LSG ocean model, T2 resolution, reasonable climate

- Experiments melting season (Feb-Sep), 5 days resampling time, target pan-Arctic sea ice



Arctic sea ice reduction in Plasm-LSG
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Arctic sea ice reduction in Plasm-LSG
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Arctic sea ice reduction in Plasm-LSG

(a) 10.04 (b) 10.0 ®- SURFACE UPWARD SHORTWAVE FLUX
— - SURFACE DOWNWARD SHORTWAVE FLUX
‘]‘ 7.51 f'T_‘ 7.5 x -CTRL INT. STD. DEV.: SURFACE UPWARD SHORTWAVE FLUX
£ = X -CTRL INT. STD. DEV.: SURFACE DOWNWARD SHORTWAVE FLUX
2 50 g 2 50
x x x
-)
2 257 X é 2.5 S H
> >
g 00 9 00
z L v | .
w o 51 W o ] Ssq & Tl
— 25 w 25 X * ~~~~~~~~~~~~~ Prmmmmm—— -
2 2 » \‘I"' = v
& -5.0 & -5.0 4 ! 1 1 X
a ~-@ SURFACE UPWARD LONGWAVE FLUX o .
a -7.51 -®- SURFACE DOWNWARD LONGWAVE FLUX ‘2 -7.5 X v
X CTRL INT. STD. DEV.: SURFACE UPWARD LONGWAVE FLUX x X
-10.0+ X CTRLINT. STD. DEV.: SURFACE DOWNWARD LONGWAVE FLUX -10.0
FEBSEP  FM MA AM M) ) JA AS FEBSEP  FM MA AM M) ) JA AS
(c) 10.0¢ - - - - - - . . ‘1.5 (d) . . . i i ) ) )
C I d . 10.0 -#- SURFACE ALBEDO: ALGORITHM (WITH 95% CONFIDENCE INTERVAL)
751 ou cover | : . X SURFACE ALBEDO: CTRL INT. STD. DEV.
P t 110 E .
. r.water™ : _
— 5.0 1 l — °\° 5 0
& X € = .
2 £ X & 053 g
3 25 | wTTT Tl @ & 2 25 X
O x - < o X
o > X X X X
> 00 Tooegeo- 00 & < 00 b SR -
S Ew T T — |eemea- -
3 - S e e B L
o =251 s & =25 S e e A B B~
5 T8 3 5, S
5 ~>0] -m TOTAL CLOUD COVER ALGORITHM (WITH 95% CONFIDENCE INTERVAL) g < - AI b e d o = L
-®- INTERGRATED WATER VAPOUR ALGORITHM (WITH 95% CONFIDENCE INTERVAL) | -1.0 &) -75
=7.51 Y CTRL INTERANNUAL STANDARD DEVIATION TOTAL CLOUD COVER * =
% CTRL INTERANNUAL STANDARD DEVIATION INTEGRATED WATER VAPOUR - -10.0
-10.0 . =15
FEBSEP  FM MA AM M) ) JA AS FEBSEP  FM MA AM M) ) JA AS

- Three ingredients are necessary to obtain a seasonal extreme of Arctic sea ice:
- Preconditioning (memory and/or lack of sea ice thickening during winter)

- Highly humid and cloudy Arctic atmosphere throughout late winter and spring

- Arctic “heatwave” in early summer Sauer et al., submitted



Arctic sea ice reduction in Plasm-LSG
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- Three ingredients are necessary to obtain a seasonal extreme of Arctic sea ice:
- Preconditioning (memory and/or lack of sea ice thickening during winter)

- Highly humid and cloudy Arctic atmosphere throughout late winter and spring

- Arctic “heatwave” in early summer Sauer et al., submitted



Rare event algorithm and importance sampling

- Applications:

- AMOC weakening and collapse in coupled Plasim-LSG



AMOC weakening and collapse in Plasim-LSG
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- AMOC weakening extremes, Matteo Cini (PhD University of Turin, ISAC, M.Sc. University
of Bologna), Giuseppe Zappa, Susanna Corti

- Simulations with Plasim coupled to LSG ocean model, T21 resolution, resampling | year

- Target: AMOC strength obtained as maximum of the Atlantic meridional overturning
streamfunction between 46° and 66°N and below 700m



AMOC weakening and collapse in Plasim-LSG
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- AMOC weakening extremes, Matteo Cini (PhD University of Turin, ISAC, M.Sc. University
of Bologna), Giuseppe Zappa, Susanna Corti

- Simulations with Plasim coupled to LSG ocean model, T21 resolution, resampling | year

- Target: AMOC strength obtained as maximum of the Atlantic meridional overturning
streamfunction between 46° and 66°N and below 700m



AMOC weakening and collapse in Plasim-LSG

a Forcing surface zonal wind stress
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- Atmospheric trigger via anomalous freshwater fluxes and zonal wind stress anomalies
(contribution of Ekmann currents to AMOC weakening)

- Sampling of trajectories with extreme AMOC weakening only due to internal variability:
experiments with no external forcing (no hosing, global warming, etc)



AMOC weakening and collapse in Plasim-LSG
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- Switching off the algorithm (purple) after reaching a weak AMOC state (blue) some
trajectories recover, other keep drifting: reached basin of attraction of collapsed state



AMOC weakening and

collapse in Plasim-LSG
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- Switching off the algorithm (purple) after reaching a weak AMOC state (blue) some
trajectories recover, other keep drifting: reached basin of attraction of collapsed state

- Value of AMOC index does not fully identify likelihood of staying in collapsed vs active
state: issue with using it standalone to study stability when changing a parameter?



Future perspectives

For the future: how to apply these techniques to predictability problems (move to state of
the art coupled models and constrain initial conditions to slow components)

Dedicated algorithms to analyse transitions could help to study tipping elements

Application to non-stationary conditions?

Other current projects:
- large deviations of finite time Lyapunov exponents (with Jonathan Demaeyer)

- marine heatwaves in coupled GCMS and seasonal to decadal predictability

Thank you for your attention



Experiments with CESM: heatwaves over Scandinavia
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Analysis of trajectories branching

4 Ensemble at the end of the simulation
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- Analysis of the branching of the trajectories due to the cloning
- What makes an “ancestor” trajectory successful?

- Precursors and climatic drivers: predictability of risk



AMOC weakening and collapse in Plasim-LSG

a Streamfunction anomalies b Convection anomalies
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AMOC weakening and collapse in Plasim-LSG




