Preparing for Surprise under Global Change:

Resilience, Tipping Points, Early-Warning Signals

Vasilis Dakos

Institut des Sciences de l'Evolution (ISEM)

University of Montpellier, CNRS

Institut des Sciences de l'Evolution-Montpellier

IHP, 5 Oct 2023

Climate emergency: world 'may have crossed tipping points'

Warning of 'existential threat to civilisation' as impacts lead to cascade of unstoppable events

Amazon near tipping point of switching from rainforest to savannah – study

Climate crisis and logging is leading to shift from canopy rainforest to open grassland

Could biodiversity destruction lead to a global tipping point?

World is approaching coronavirus tipping point, say experts

78,000 cases confirmed, as Italy and Iran scramble to contain major outbreaks

Follow the latest coronavirus news and updates - live

what is a tipping point?

climate systems can change abruptly

biomes may shift to a desert state

coral reefs shift to an alternative macroalgae state

shalow lakes shift from a clear to a turbid state due to eutrophication

understanding and anticipating ecological tipping point responses to stress

Outline

1. Basics of tipping point detection and quantification of resilience

2. An empirical assessment of tipping point detection and resilience

what is a tipping point?

• Abrupt (relative to the a driver and system time-scale)

- Abrupt (relative to the a driver and system time-scale)
- Unexpected (triggered by small perturbations)

- Abrupt (relative to the a driver and system time-scale)
- Unexpected (triggered by small perturbations)
- Substantial (catastrophic)

- Abrupt (relative to the a driver and system time-scale)
- Unexpected (triggered by small perturbations)
- Substantial (catastrophic)
- Often (but not always) difficult to reverse

- Abrupt (relative to the a driver and system time-scale)
- Unexpected (triggered by small perturbations)
- Substantial (catastrophic)
- Often (but not always) difficult to reverse

Tipping point:

a situation where accelerating change caused by a positive feedback drives the system to a new state

(van Nes et al TREE 2016)

systems responses to environmental stress

systems responses to environmental stress

systems responses to environmental stress

environmental stress

Top 5 Search Terms - Publications over Time

Defining tipping points for social-ecological systems scholarship—an interdisciplinary literature review Milkoreit et al 2016 Env Res Let

Can we detect tipping points in advance?

Resilience (ecological):

the magnitude of disturbance a system can tolerate before shifting to an alternative state

(Holling 1973)

loss of (ecological) resilience ~ proximity (high-risk) to tipping point
hing

ENVIRONMENTAL RESEARCH LETTERS

TOPICAL REVIEW

ssMark

Ecological resilience: what to measure and how

Vasilis Dakos* and Sonia Kéfi

but hard to measure ecological resilience

Dakos & Kefi 2022, Env Res Lett

systems prior to tipping points slow down

catastrophe theory and catastrophe flags

Thom 1976

Gilmore 1981

tipping point indicators

Critical Slowing Down (CSD)

Resilience Indicators (or Early Warnings)

tipping point indicators

Critical Slowing Down (CSD)

Resilience Indicators (or Early Warnings)

recovery time increases

tipping point indicators

Critical Slowing Down (CSD)

Resilience Indicators (or Early Warnings)

recovery time increases

variance increases

REVIEWS

Early-warning signals for critical transitions

Marten Scheffer¹, Jordi Bascompte², William A. Brock³, Victor Brovkin⁵, Stephen R. Carpenter⁴, Vasilis Dakos¹, Hermann Held⁶, Egbert H. van Nes¹, Max Rietkerk⁷ & George Sugihara⁸

Early-warning signals (for tipping point detection)

changes in statistical signatures in time or space that infer loss of resilience and proximity to tipping point responses

slowing down in a living system

phytoplankton collapse due to photoinhibition

slowing down in a living system

phytoplankton collapse due to photoinhibition

removal of 10% of standing stock through dilution

slowing down in a living system

phytoplankton collapse due to photoinhibition

removal of 10% of standing stock through dilution

slowing down before past climate shifts

©2004, ACIA / Map ©Clifford Grabhorn

Shutdown of thermohaline circulation (CLIMBER2 EIC)

Dakos et al 2008, PNAS

slowing down before past climate shifts

©2004, ACIA / Map ©Clifford Grabhorn

slowing down before past climate shifts

theoretical challenge - too generic?

Boettiger et al. 2013

Constraints and Challenges

Constraints and Challenges

Dakos et al 2015, Phil Trans B Roy Soc

Constraints and Challenges

Dakos et al 2015, Phil Trans B Roy Soc

methods for tipping point detection – mostly on temporal data (less spatial)

CSD-based	non-CSD-based	
(~ B-tipping)	(~ B-tipping/ N-tipping)	
variance (temporal/spatial) autocorrelation (temporal/spatial) return rate/time (temporal) detrended fluctuation analysis (temporal) spectral reddening (temporal) variance-covariance eigenvalue (temporal) dynamic eigenvalue (temporal) Machine-Learning approach (temporal) recovery length (spatial) speed of traveling waves (spatial) repair time (spatial) Discrete Fourier transform (spatial)	skewness (temporal/spatial) conditional heteroscedasticity (temporal/spatial) potential analysis (temporal) kurtosis (temporal) quickest detection method (temporal) Fisher information (temporal) mean exit time-Fokker-Planck (temporal) nonlinearity (temporal) trait statistical changes (temporal) Machine-Learning approach (temporal) average flux (temporal) Turing patterns (spatial) patch size distributions (spatial) Kolmogorov complexity (spatial) network–properties (spatial/temporal)	
generalised models (temporal) time-varying AR(p) models (temporal) probabilistic time-varying AR(p) (temporal)	drift-diffusion-jump models (temporal) threshold AR(p) models (temporal) likelihood ratio (temporal)	

pattern-based

process-based

early-warning-signals.org

Name	Software	Description	Reference
earlywarnings	R package	One of the earliest R packages to calculate model and metric based early-warnings	(Dakos et al., 2012) github.com/earlywarningtoolbox
earlywarning	R package format	Fits a normal form model with and without a saddle-node bifurcation based on a likelihood approach	(Boettiger and Hastings, 2012b) github.com/cboettig/earlywarning
Generic_ews	Matlab	Matlab translation from the early-warning signals toolbox in R	git.wur.nl/sparcs/generic_ews- for-matlab/-/tree/master
spatialwarnings	R package	Estimates spatial warning signals based on spatial statistics and spatial pattern formation	(Génin et al., 2018)
ewstools	Python package	Python translation of the earlywarnings toolbox, with the addition of deep learning classifiers	(Bury, 2023)
EWSmethods	R package	toolbox inspired by <i>earlywarnings</i> , that omits model-based EWS, but includes multivariate indicators	(O'Brien et al., n.d.)

Outline

1. Basics of tipping point detection and quantification of resilience

2. An empirical assessment of tipping point detection and resilience

Systematic review of empirical use of early-warnings

A growing list of empirical studies (229!) ...

Multitude of early-warnings: 65 signals but only 21 used in more than 1 paper

application: monitoring, mapping, ranking

- monitor changes in resilience within a system (early-warnings)
- map+rank resilience across systems/sites/species (identify hotspots of resilience loss)

monitoring tree mortality risk

monitoring tree mortality risk

NDVI (Normalized Difference Vegetation Index)

monitoring tree mortality risk

mapping and ranking forest resilience at global scales

mapping and ranking forest resilience at global scales

NDVI from global forest ecosystems

higher autocorrelation (δTAC) = less resilience ~ higher risk of tipping response

Forzieri, Dakos et al Nature (2022)

mapping – projected changes in climate variability as proxy for hotspots of climate instability

Relative changes in variability of monthly temperature between historical record (~1900) and model projections until 2100

based on output from 37 models from CMIP5

mapping – projected changes in climate variability as proxy for hotspots of climate instability

Relative changes in variability of monthly temperature until 2100

Bathiany, et al 2018, Science Advances

empirical performance of early-warnings?

empirical performance of early-warnings: 68% positive

empirical performance of early-warnings: 68% positive

some thoughts
numerous approaches EWS/ well-developed theoretical framework (mostly based on local bifurcations)

numerous approaches EWS/ well-developed theoretical framework (mostly based on local bifurcations)

empirical application remains difficult (probably biased view of positive results)

numerous approaches EWS/ well-developed theoretical framework (mostly based on local bifurcations)

empirical application remains difficult (probably biased view of positive results)

monitoring resilience harder compared to mapping-ranking resilience (relative rather absolute measure)

numerous approaches EWS/ well-developed theoretical framework (mostly based on local bifurcations)

empirical application remains difficult (probably biased view of positive results)

monitoring resilience harder compared to mapping-ranking resilience (relative rather absolute measure)

novel combined approaches (statistical, ML)

numerous approaches EWS/ well-developed theoretical framework (mostly based on local bifurcations)

empirical application remains difficult (probably biased view of positive results)

monitoring resilience harder compared to mapping-ranking resilience (relative rather absolute measure)

novel combined approaches (statistical, ML)

challenge: assumption of tipping point -Mechanisms (positive feedbacks) -Bistability -Irreversibility

Thank you

vasilis.dakos@umontpellier.fr vasilisdakos.info early-warning-signals.org

Institut des Sciences de l'Evolution-Montpellier

