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Climate emergency: world 'may have
crossed tipping points’

Warning of ‘existential threat to civilisation’ as impacts lead to
cascade of unstoppable events

Guardian
Nov 2019




Amazon near tipping point of switching
from rainforest to savannah — study

Climate crisis and logging is leading to shift from canopy
rainforest to open grassland

Guardian
Oct 2020




Could biodiversity destruction lead to a
global tipping point?

Guardian
Jan 2018




World is approaching coronavirus
tipping point, say experts

78,000 cases confirmed, as Italy and Iran scramble to contain
major outbreaks

Follow the latest coronavirus news and updates - live

Guardian
Fep2020




what is a fipping pointe
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climate systems can change abruptly
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biomes may shift to a desert state
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populations collapse
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understanding and anfticipating
ecological fipping point responses to stress



Outline

1. Basics of fipping point detection and
quantification of resilience

2. An empirical assessment of
tipping point detection and resilience



what is a fipping pointe

The

TIPPING POINT

How Little"l'/zings Can
Make a Big%l)iffercnce
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Change:

« Abrupt (relative to the a driver and system time-scale)
* Unexpected (ifriggered by small perturbations)

- Substantial (catastrophic)

« Often (but not always) difficult to reverse

Tipping point:

a situation where caused by a
drives the system to @

(van Nes et al TREE 2016)



systems responses to environmental stress
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systems responses to environmental stress
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systems responses to environmental stress
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tipping points between alternative stable states

Catastrophic

State A . .
bifurcation

‘Tipping point’

Catastrophic shift

Critical fransition
Discontinuous transition
First-order phase transition

Regime shift
Abrupt change
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environmental stress



Top 5 Search Terms - Publications over Time
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Defining tipping points for social-ecological
systems scholarship—an interdisciplinary literature

"OVIEW " Mikoreit et al 2016 Env Res Let



tipping points between alternative stable states
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tipping points between alternative stable states
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tipping points between alternative stable states
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tipping points between alternative stable states
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tipping points between alternative stable states
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bifurcation
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tipping points between alternative stable states
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tipping points between alternative stable states
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tipping points between alternative stable states
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Resilience (ecological):

the magnitude of disturbance a system can tolerate
pefore shiffing to an alternative state

(Holling 1973)

loss of (ecological) resilience ~ proximity (high-risk) to tipping point



TOPICAL REVIEW

Ecological resilience: what to measure and how

Vasilis Dakos™ and Sonia Kéfi

but hard to measure ecological resilience

Dakos & Kefi 2022, Env Res Lett



systems prior to tipping points slow down

Wissel 1984 Oecologia; Strogatz 1994



catastrophe theory and catastrophe flags

Thom 1976 Gilmore 1981



= tipping point indicators

Rping point Critical Slowing Down (CSD)
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= tipping point indicators
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REVIEWS

Early-warning signals for critical transitions

Marten Scheffer', Jordi Bascompte?, William A. Brock®, Victor Brovkin®, Stephen R. Carpenter”, Vasilis Dakos',
Hermann Held®, Egbert H. van Nes', Max Rietkerk” & George Sugihara®

Early-warning signals (for tipping point detection)

changes in statistical signatures in fime or space that

Infer loss of resilience and proximity to tipping point
responses



slowing down in a living system

phytoplankton collapse due to photoinhibition

Veraart et al 2012, Nature



slowing down in a living system

phytoplankton collapse due to photoinhibition

removal of 10% of standing stock through dilution
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slowing down in a living system

phytoplankton collapse due to photoinhibition

removal of 10% of standing stock through dilution
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slowing down before past climate shifts

Shutdown of thermohaline circulation (CLIMBER2 EIC)

Freshwater forcing (Sv)
-0.35 -03 -0,125 -01.2 0.15 -0.1 -0‘105
1

1 ]
4" - -
_______ C
-

|
m
L8]
-
e ® |

Salinity
(principal component)
|
1
¥

-0002 0002 0006 0010

0 10 20 30 40 50
time (x1,000 years)

Model data ©2004, ACIA | Map ©Clifford Grabhorn

Dakos et al 2008, PNAS



slowing down before past climate shifts

Shutdown of thermohaline circulation (CLIMBER2 EIC)

Freshwater forcing (Sv)
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slowing down before past climate shifts

Shutdown of thermohaline circulation end of Younger Dryas

Freshwater forcing (Sv)
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theoretical challenge - too generice

Rapid Regime Critical Slowing

Shifts Down
| | Saddle node
bifurcation

V chaolic Hopf, |V

Crisis, transcritical

. 7=\
external focing, Maxwell bifurcations smooth

stochastic events paint transitions
transition

There can be tipping points There can be EWS
without EWS without tipping points

Boettiger et al. 2013



Constraints and Challenges

|
,l. conceptual constraints l ,l.

high stochasticity ’l’ strong external driver change extreme event(s)

Dakos et al 2015, Phil Trans B Roy Soc



Constraints and Challenges

,l. conceptual constraints

! l

high stochasticity ’l’ strong external driver change extreme event(s)

l

(time series, spatial datasets)

data

operational constraints I

l

low resolution,
inappropriate scale,
short records,

high observational error

Dakos et al 2015, Phil Trans B Roy Soc



Constraints and Challenges

,l. conceptual constraints

! l

high stochasticity ’l’ strong external driver change extreme event(s)

!

(time series, spatial datasets)

data

operational constraints

inappropriate scale,

short records,
high observational error

appropriate methods
l methodological constraints l

!

early detection resilience mapping

Dakos et al 2015, Phil Trans B Roy Soc



methods for tipping point detection —
mostly on temporal data (less spatial)

CSD-based non-CSD-based
(~ B-tipping) (~ B-tipping/ N-tipping)

variance (temporal/spatial) skewness (temporal/spatial)
autocorrelation (temporal/spatial) conditional heteroscedasticity (temporal/spatial)

-5 | returnrate/time (temporal) potential analysis (temporal)

g detrended fluctuation analysis (temporal) kurtosis (temporal)

@ | spectral reddening (temporal) quickest detection method (temporal)

< | variance-covariance eigenvalue (temporal) | Fisher information (temporal)

- dynamic eigenvalue (temporal) mean exit time-Fokker-Planck (temporal)

9 Machine-Learning approach (temporal) nonlinearity (temporal)

L] recovery length (spatial) trait statistical changes (temporal)

Q. speed of traveling waves (spatial) Machine-Learning approach (temporal)
repair time (spatial) average flux (temporal)
Discrete Fourier transform (spatial) Turing patterns (spatial)

patch size distributions (spatial)

© Kolmogorov complexity (spatial)

% network—properties (spatial/temporal)

-? generalised models (temporal) drift-diffusion-jump models (temporal)

v | time-varying AR(p) models (temporal) threshold AR(p) models (temporal)

8 probabilistic time-varying AR(p) (temporal) | likelihood ratio (temporal)

o

o

Dakos et al (2023) EGUsphere



methods for tipping point detection —
mostly on temporal data (less spatial)

Early
Warning Qo

Signals
early-warning-signals.org

Name Software Description Reference
earlywarnings | R One of the earliest R packages to calculate | (Dakos et al., 2012)
package | model and metric based early-warnings github.com/earlywarningtoolbox
earlywarning R Fits a normal form model with and without a | (Boettiger and Hastings, 2012b)

package | saddle-node bifurcation based on a likelihood | github.com/cboettig/earlywarning
format | approach

Generic_ews Matlab | Matlab translation from the early-warning | git.wur.nl/sparcs/generic_ews-
signals toolbox in R for-matlab/-/tree/master
spatialwarnings | R Estimates spatial warning signals based on | (Génin et al., 2018)
package | spatial statistics and spatial pattern formation
ewstools Python | Python translation of the earlywarnings toolbox, | (Bury, 2023)
package | with the addition of deep learning classifiers
EWSmethods R toolbox inspired by earlywarnings, that omits | (O’Brien et al., n.d.)
package | model-based EWS, but includes multivariate
indicators

Dakos et al (2023) EGUsphere



Outline

1. Basics of fipping point detection and
quantification of resilience

2. An empirical assessment of
tipping point detection and resilience



Systematic review of empirical use of
early-warnings

Dakos et al (2023) EGUsphere



A growing list of empirical studies (229!) ...

30

domain
B ecology

B health
I climate
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20

# papers

10

Scheffer et al 2009
Nature review

2010

Dakos et al (2023) EGUsphere

2015
year

2020

250

200

150

50

Ecology (104)

(desertification, lake
eutrophication, population
collapse, community shifts)
Climate (33)

(paleoclimatic shifts, current
climate systems)

Physical sciences (18)

(power grid, material science)
Health (53)

(cardiac instability, depression,
geriatrics, disease epidemics, gut
microbiome)

Social sciences (31)

(social unrest, finance)



-Wwarnings

Multitude of early
65 signals but only 21 used in more than 1 paper

B ecology

B climate
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Dakos et al (2023) EGUsphere
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application: monitoring, mapping, ranking

variance autocorrelation
time/stressor time/stressor

* monitor changes in resilience within a system
(early-warnings)

 map+rank resilience across
systems/sites/species (idenftify hotspots of
resilience loss)



monitoring tree mortality risk




NDVI

monitoring tree mortality risk

NDVI (Normalized Difference Vegetation Index)
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monitoring tree mortality risk

NDVI (Normalized Difference Vegetation Index)
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mapping and ranking forest resilience at global scales



mapping and ranking forest resilience at global scales

NDVI from global forest ecosystems

less resilience
0.01
5
0.005
10
i -0.005
-0.01

more resilience

trend in autocorrelation (6TAC)

higher autocorrelation (6TAC) = less resilience ~ higher risk of fipping response

Forzieri, Dakos et al Nature (2022)



projected changes in climate variability
as proxy for hotspofts of climate instability

Relative changes in variability of monthly tfemperature between
historical record (~1900) and model projections until 2100

based on output from 37 models from CMIP5

Bathiany, et al 2018, Science Advances



mapping — projected changes in climate variability
as proxy for hotspofts of climate instability

Relative changes in variability of monthly tfemperature until 2100
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empirical performance of early-warningse

scientific domain performance early-warning type
4 performance
climate inconclusive
(33) mixed
negative
positive
ecology
(104) CSD-based
(179)
health
(53)
physical_sciences
18
S non-CSD-based
(60)
social_sciences
(31)

Dakos et al (2023) EGUsphere



empirical performance of early-warnings: 68% positive

scientific domain performance early-warning type
I inconclusive (10)
. performance
climate inconclusive
(33) mixed
' negative
mixed positive
(59)
negative (8)
ecology
(104) CSD-based
(179)
positive
health (162)
(53)
physical_sciences
18
S non-CSD-based
(60)
social_sciences
(31)

Dakos et al (2023) EGUsphere



empirical performance of early-warnings: 68% positive

scientific domain performance early-warning type
| inconclusive (10) performance
climate I inconclusive
(33) . mixed
 negative
mixed iti
5 | positive
negative (8)
ecolo
(10 4)gy CSD-based
(179)
positive
health (162)
(53)
physical_sciences
18
(18) non-CSD-based
(60)
social_sciences
(31)

Dakos et al (2023) EGUsphere
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some thoughts

numerous approaches EWS/ well-developed theoretical framework
(mostly based on local bifurcations)

empirical application remains difficult
(probably biased view of positive results)

monitoring resilience harder compared to mapping-ranking resilience
(relative rather absolute measure)

novel combined approaches
(statistical, ML)

challenge: assumption of tipping point
-Mechanisms (positive feedbacks)
-Bistability

-Irreversibility



Thank you

vasilis.dakos@umontpellier.fr
vasilisdakos.info
early-warning-signals.org
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