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what is a tipping point?



shutdown of thermohaline circulation

climate systems can change abruptly



cnrs29_dakos_2.pptx

deMenocal et al (2000), Science

biomes may shift to a desert state



populations collapse



coral reefs shift to an alternative macroalgae state 



shalow lakes shift from a clear to a turbid state 
due to eutrophication



understanding and anticipating
ecological tipping point responses to stress



Outline

2. An empirical assessment of 
tipping point detection and resilience

1. Basics of tipping point detection and
quantification of resilience



what is a tipping point?Common points

• Contagious behavior
• Little changes, big effects
• Fast

à The « tipping point »
2000



Change:

• Abrupt (relative to the a driver and system time-scale) 



Change:

• Abrupt (relative to the a driver and system time-scale) 

• Unexpected (triggered by small perturbations)



Change:

• Abrupt (relative to the a driver and system time-scale) 

• Unexpected (triggered by small perturbations)

• Substantial (catastrophic)



Change:

• Abrupt (relative to the a driver and system time-scale) 

• Unexpected (triggered by small perturbations)

• Substantial (catastrophic)

• Often (but not always) difficult to reverse



Change:

• Abrupt (relative to the a driver and system time-scale) 

• Unexpected (triggered by small perturbations)

• Substantial (catastrophic)

• Often (but not always) difficult to reverse

Tipping point:

a situation where accelerating change caused by a 
positive feedback drives the system to a new state 

(van Nes et al TREE 2016) 
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Regime shift
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Environ. Res. Lett. 13 (2018) 033005 Manjana Milkoreit et al

Figure 1. Total publication count for the search strings ‘tipping point∗’ and (‘tipping point∗’ AND social), 1960<2016, WoS.

Figure 2. Frequency of occurrence for the six most popular terms in the WoS database between 1980 and 2016. All publications
between 1960 and 1979 are displayed in aggregate.

We conduct the content analysis via NVivo. The
code-book was developed in three steps. First, we iden-
tified a number of theoretically-driven codes to answer
three questions: What terminology do authors pre-
fer (‘Terminology’), how do authors define tipping
points (‘Definition’), and which phenomena in nature
do they address (‘Phenomenon of Interest’)? Second,
we built on the Russill and Nyssa (2009) analysis of
definitions of tipping points used by climate scientists
since 2005 to identify an initial list of eleven codes for
themes in tipping point definitions (table S6). Third,
additional coding terms were added in the process

of coding, using a grounded theory approach (Glaser
2017). Grounded theory aims at building theory from
social data. The data is usually approached without
a pre-existing set of theoretically informed codes or
concepts. Instead, coding terms emerge, i.e. they are
progressively revealed in repeated rounds of coding
and theme identification. The final code structure is
included in table S7.

We analyzed the coding results to identify dif-
ferences and themes in tipping point definitions, the
prevalence of themes in each cluster, and temporal
changes in the preferred terminology and definitions.
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Ashwin et al 2012, Phil Trans R Soc A
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Can we detect tipping points in advance?
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resilience



Resilience (ecological):

the magnitude of disturbance a system can tolerate 
before shifting to an alternative state

(Holling 1973)

loss of (ecological) resilience ~ proximity (high-risk) to tipping point



but hard to measure ecological resilience

Dakos & Kefi 2022, Env Res Lett
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Abstract
The question of what and how to measure ecological resilience has been troubling ecologists since
Holling 1973s seminal paper in which he defined resilience as the ability of a system to withstand
perturbations without shifting to a different state. This definition moved the focus from studying
the local stability of a single attractor to which a system always converges, to the idea that a system
may converge to different states when perturbed. These two concepts have later on led to the
definitions of engineering (local stability) vs ecological (non-local stability) resilience metrics.
While engineering resilience is associated to clear metrics, measuring ecological resilience has
remained elusive. As a result, the two notions have been studied largely independently from one
another and although several attempts have been devoted to mapping them together in some kind
of a coherent framework, the extent to which they overlap or complement each other in quantifying
the resilience of a system is not yet fully understood. In this perspective, we focus on metrics that
quantify resilience following Holling’s definition based on the concept of the stability landscape. We
explore the relationships between different engineering and ecological resilience metrics derived
from bistable systems and show that, for low dimensional ecological models, the correlation
between engineering and ecological resilience can be high. We also review current approaches for
measuring resilience from models and data, and we outline challenges which, if answered, could
help us make progress toward a more reliable quantification of resilience in practice.

1. Introduction

Intuitively, resilience is the ability of a system to
cope with disturbances, bounce back, and main-
tain its state and functionality. In the ongoing con-
text of global change, understanding resilience is of
utmost importance to achieve sustainable interac-
tions between humans and ecosystems (Cañizares
et al 2021). However, moving from intuition to prac-
tically measuring resilience has been a real challenge
in ecology (Carpenter et al 2001, Kéfi et al 2019, Pimm
et al 2019, Capdevila et al 2021).

Measuring resilience in practice has been chal-
lenged by the fact that the definition of resilience
has lost clarity through time. Resilience has been
used acrossmultiple scientific disciplines (Baggio et al
2015), each with a different understanding of what
resilience means (Angeler and Allen 2016, Walker
2020). Within the ecological literature, resilience has

been defined in multiple ways (Grimm et al 1997),
and sometimes the same definition has even been
applied in different ways across different ecosystems
(Yi and Jackson 2021). Now—at least in ecology—
two definitions of resilience dominate in the literat-
ure: engineering resilience, that is the rate with which
a system returns to a reference state after a disturb-
ance (Pimm 1984), and ecological resilience, that is
the magnitude of disturbance that can be absorbed
before a system flips to another state (Holling 1973).

There have been numerous efforts aiming at
bridging the gap between the clear intuitive concept of
resilience and an operational and measurable quant-
ity. These efforts can be summarized in identifying
properties that guarantee resilience (e.g. Folke et al
2004, Thrush et al 2009, Biggs et al 2012), suggest-
ing surrogates that could indirectly reflect resilience
(Carpenter et al 2005, Cumming et al 2005), or devel-
oping qualitative and quantitative approaches for

© 2022 The Author(s). Published by IOP Publishing Ltd
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autocorrelation rises
Dakos et al 2010, Theor Ecol
Dakos et al 2012, Ecology

recovery rate decreases
Dakos et al 2011, Am Nat

variance increases
Dakos et al 2012, Ecology
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close to tipping

systems prior to tipping points slow down

Wissel 1984 Oecologia; Strogatz 1994



catastrophe theory and catastrophe flags

Gilmore 1981Thom 1976
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Early-warning signals (for tipping point detection)

changes in statistical signatures in time or space that 
infer loss of resilience and proximity to tipping point 
responses



Veraart et al 2012, Nature

phytoplankton collapse due to photoinhibition

slowing down in a living system
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Data

end of Younger Dryas

Dakos et al 2008, PNAS
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Paleo-climate data

end of Younger DryasShutdown of thermohaline circulation

slowing down before past climate shifts

Dakos et al 2008, PNAS

Model data



There can be EWS 
without tipping points

Boettiger et al. 2013

There can be tipping points 
without EWS

theoretical challenge - too generic?



6. Critical slowing down indicator detection is
sensitive to false alarms

Even under the ideal case of a well-defined bistable ecosys-
tem, a rise in variance and autocorrelation may be triggered
by factors other than approaching a critical transition. The
most common sources of false alarms are changes in the sto-
chastic regime of perturbations rather than the actual
dynamics [20,65]. For example, an increase in the magnitude
of environmental stochasticity (like extreme events, or stron-
ger climatic fluctuations) will cause any ecosystem response
to appear more variable. As a result variance will rise, but
autocorrelation should remain constant (electronic sup-
plementary material, figure S1b,c). However, positive trends
in both variance and autocorrelation can be observed when
there is some memory in the temporal evolution of environ-
mental shocks, like temperatures fluctuating around high
values during hot periods (electronic supplementary
material, figure S1d,e). In such cases, CSD indicators would
just reflect changes in the patterns of stochasticity rather
than an approaching critical transition.

7. Critical slowing down indicators may fail to
announce a true transition: no alarms

While a false alarm can be a burden in terms of the costs it may
incur, the absence of an alarm prior to a transition can be really
disastrous. Thus, it is important to acknowledge that there is a
high chance that there will be no early warning trend even if the
likelihood for a transition increases. Conditions under which
no alarms may occur include:

— large process error: the magnitude of environmental shocks
may overshadow CSD. Simulations with large correlated
noise have shown that indicators perform poorly when
estimated from sparsely sampled time series [66].

— large observation error: imprecise observations make it
difficult to discern CSD indicators [67].

— multiple noise effects: when environmental stochasticity acts
both on ecosystem state (e.g. by removing biomass) and
ecosystem processes (e.g. by changing growth rates)
ecosystem dynamics may be amplified or dampened.
Such multiple effects may result in distorted patterns in
variance and autocorrelation prior to a transition [65,68].

— rapid approach to the critical transition: if the system is
approaching fast the critical threshold, there may not be
time for CSD indicators to be detected [66,69].

— muffling: if there are multiple thresholds approached (as
may well be the case), ecosystem responses may be
muffled rendering CSD indicators difficult to detect [70].

— higher order terms neglected in linearizations may not
damp off as expected and will interfere with CSD [68].

— fluctuating environments: periodically fluctuating (e.g. sea-
sonal) patterns either in underlying conditions or external
perturbations may mute the fingerprint of CSD on the
indicators [67].

— measuring the wrong variable: despite the fact that CSD is
assumed to affect a system as awhole different ecosystem vari-
ables are not all equally sensitive in exhibiting CSD [71–73].

— non-local bifurcations: certain kinds of critical transitions that
involve non-local bifurcations, such as basin-boundary
collisions, will not demonstrate CSD indicators [20,45].

— non-stationary conditions: if prior to environmental change,
the ecosystem is not in equilibrium, early warning detection

operational constraints

is there evidence of:
alternative states? bimodality? positive feedbacks?

not applicable

slowly changing driver

no

high stochasticity strong external driver change extreme event(s)

data
(time series, spatial datasets)

low resolution,
inappropriate scale,
short records,
high observational error

long, continuous time series multiple cases,
controls

mechanism for regime shift

early detection resilience mapping

appropriate methods,
methodological constraints

conceptual constraints

yes

Figure 3. A map of conceptual, operational and methodological considerations when applying CSD indicators for the detection of critical transitions and resilience
mapping. Light green colours indicate cases where early detection is less likely. (Online version in colour.)

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20130263
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Sieber, 2011). In this paper, the early-warnings considered are mostly developed in the context of 

the discontinuous fold bifurcation. 

 

We hereafter present a representative (but not complete) overview of the mostly-used early-

warnings both theoretically and empirically. These signals can be classified in different ways 130 

depending, for instance, on the type of mechanism or tipping point (e.g. CSD-based, non-CSD-

based), the type of data used (e.g. temporal, spatial, trait, abundance data), the approach employed 

(e.g. analysing patterns, fitting models, network methods). In Table 2, we suggest a taxonomy of 

early-warnings based on the mechanism and the approach used. We then present their basics 

without going into the details. A full description as well as methods to estimate them can be found 135 

elsewhere (Dakos et al., 2012; Kéfi et al., 2014; Scheffer et al., 2015; Clements and Ozgul, 2018; Lenton, 2011; 

Génin et al., 2018) and in dedicated software packages (Table 1).  

 

 
Table 2. A taxonomy of early-warnings depending on whether the warning is based or not on Critical Slowing Down (CSD). 140 
CSD-based early-warnings are mostly associated with bifurcation tipping (B-tipping), while non-CSD-based ones both with 
B-tipping and noise-induced tipping (N-tipping, see also Sect. 2.1). A second dichotomy is based on the approach: whether 
the warning is a statistical metric based on the dynamical patterns of the system, or whether it is based on a (as simple as 
possible) process-model. In parenthesis the type of data (temporal and/or spatial) used to estimate the early-warning.  

Dakos et al (2023) EGUsphere
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Whatever the term used, while early-warnings are well grounded in theory, the challenge remains 75 

to apply them to real-world systems. A number of review and synthesis papers have summarized 

the theoretical aspects of early-warnings and provided partial accounts of their empirical 

applications (Scheffer et al., 2012a, 2015; Dakos and Kefi, 2022; Nijp et al., 2019; Litzow and Hunsicker, 2016; 

Alberto et al., 2021; Bestelmeyer et al., 2011; Lenton, 2013b, 2011). Yet, although the utility of early-

warnings has led to early-warnings proliferating beyond ecology and climate and have been 80 

applied across a variety of scientific domains, we miss a complete picture of where, how, and 

which early-warnings have been used so far in real-world case studies. 

       

Here, after summarizing the basics of the theory underlying early-warnings and giving an overview 

of their taxonomy, we review the literature for the use of early-warnings in empirical studies across 85 

all scientific fields. We document what metrics have been used, their success as well as the field, 

system and tipping point involved. We then classify this information in order to provide an 

overview of the progress, the limitations and opportunities in the empirical application of early-

warnings after 15 years of research on the topic. 

 90 

 
Table 1. Available software tools for the estimation of early-warnings with temporal and spatial datasets. 

 

Name Software Description Reference 

earlywarnings R 
package 

One of the earliest R packages to calculate 
model and metric based early-warnings 

(Dakos et al., 2012) 
github.com/earlywarningtoolbox  

earlywarning R 
package 
format 

Fits a normal form model with and without a 
saddle-node bifurcation based on a likelihood 
approach 

(Boettiger and Hastings, 2012b) 
github.com/cboettig/earlywarning 
 

Generic_ews Matlab Matlab translation from the early-warning 
signals toolbox in R 

git.wur.nl/sparcs/generic_ews-
for-matlab/-/tree/master 

spatialwarnings R 
package 

Estimates spatial warning signals based on  
spatial statistics and spatial pattern formation 

(Génin et al., 2018) 

ewstools Python 
package 

Python translation of the earlywarnings toolbox, 
with the addition of deep learning classifiers 

(Bury, 2023) 

EWSmethods R 
package 

toolbox inspired by earlywarnings, that omits 
model-based EWS, but includes multivariate 
indicators 

(O’Brien et al., n.d.) 
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methods for tipping point detection –

mostly on temporal data (less spatial)



Outline

2. An empirical assessment of 
tipping point detection and resilience

1. Basics of tipping point detection and
quantification of resilience



Systematic review of empirical use of
early-warnings

Dakos et al (2023) EGUsphere



Ecology (104)
(desertification, lake 
eutrophication, population 
collapse, community shifts)
Climate (33)
(paleoclimatic shifts, current 
climate systems)
Physical sciences (18)
(power grid, material science)
Health (53)
(cardiac instability, depression, 
geriatrics, disease epidemics, gut 
microbiome)
Social sciences (31)
(social unrest, finance)

A growing list of empirical studies (229!) …
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Figure 3: Evolution of studies applying early-warnings in empirical datasets. The total 229 papers we identified through 
our literature review between 2004 and 2022 were classified within five main scientific domains (ecology, health, climate, 345 
social sciences, physical sciences). White dotted line shows the cumulative number of papers. 

 

3.2 Multiple sources of data used 

Across scientific domains, the vast majority of early-warnings were analysed on temporal data 

(77.7%), while the spatial data were used in only 8% of all studies (Fig. 4) only pertaining to 350 

ecology (Fig. S2). Survey data made the majority of the data sources (43.8%; including field 

surveys, social survey data, data from weather stations or other monitoring devices, medical data 

from hospitalisation records to electroencephalograms (EEG)), followed by data from lab 

experiments (20.7%), remote sensing (12%), paleo-reconstructions (10%), and field experiments 

(7%). This partitioning can be mostly explained by our classification, meaning that we have 355 

grouped together a heterogeneity of data sources (e.g. field surveys, historical climate data, social 

Dakos et al (2023) EGUsphere

Scheffer et al 2009 
Nature review



Multitude of early-warnings:
65 signals but only 21 used in more than 1 paper

Dakos et al (2023) EGUsphere

17 
 

(the rest 44 early-warnings were used only once, Fig. 5, Supplement A). Variance and 

autocorrelation were the dominantly used early-warnings across all domains, followed by 

skewness (Fig. 5). Besides these three early-warnings, the remaining 18 were used selectively 

within particular domains. The most striking are “spatial variance” (only used in ecological 400 

studies) and “dynamic network biomarkers” (only used in health studies, see also Sect. 3.1). Within 

domains (Fig. S4), ecology is the domain with the highest heterogeneity in the early-warnings (18 

out of the 21 used more than once), followed by health (10), and climate (7).   

 

 405 

 
Figure 5: Number of papers of the 21 early-warnings used more than once in our literature review. Each bar is partitioned 
into the 5 scientific domains.  

 

 410 



application: monitoring, mapping, ranking 

variance autocorrelation

• monitor changes in resilience within a system 
(early-warnings)

• map+rank resilience across 
systems/sites/species (identify hotspots of 
resilience loss)

time/stressor time/stressor



monitoring tree mortality risk 



Liu, et al 2019, Nature Climate Change

ARTICLES NATURE CLIMATE CHANGE

to reduce the gross primary productivity both locally and across 
North America through eco-climate teleconnections28. A probabil-
ity distribution of autocorrelation was obtained from the DLM at 
each time point during the period 1999–2015.On the basis of the 
estimated mean and uncertainty range of autocorrelation at each 
time point, the EWS was identified as the presence of a mean auto-
correlation exceeding a threshold and lasting for at least 3 months. 
The threshold was computed as the long-term average of the 80th 
percentile of the estimated autocorrelation uncertainty range. The 
magnitude of this threshold, which is constant in time, provides a 
reference for defining the abnormal range of the EWS. An example 
application of the DLM on a pixel in the southern Sierra dominated 
by pines shows that the autocorrelation in NDVI time series became 
abnormally high, that is, exceeded the long-term average of its 80th 
percentile of the uncertainty range, after October 2012 (Fig. 1b). 
Abnormally low NDVI (ALN) that may indicate foliage shedding 
was identified in September 2014 (Fig. 1a) and eventual mortality 
was observed in July 2015. No mortality or fire was observed in 
the previous years. The presence of abnormally high autocorrela-
tion, that is, reduced resilience, from October 2012 onwards serves 
as an EWS, with lead times of 23 months and 33 months to ALN 
and mortality, respectively, in this case. Although high autocor-
relation is a typical signature of critical slowing down, it does not 
guarantee the occurrence of critical slowing down and an impend-
ing critical transition; that is, it is necessary but not sufficient. To 
further examine the representativeness of the EWS for critical 
slowing down, an independent analysis of NDVI data within the 
context of a nonlinear dynamic model of vegetation dynamics with 
two stable states was conducted. The two stable states in the model 
represent an existing vegetation cover and an alternative state19. The 
analysis suggests that during the period when an EWS was iden-
tified, the system slowed down and the basin of attraction shrank 
(Supplementary Discussion, Supplementary Fig. 15). These shifts 
represent reduced recovery rate and a higher likelihood of a switch to 
an alternative state under stochastic perturbations. The occurrence  

of critical slowing down in the NDVI data during the EWS period 
within this model provides additional support for using the empiri-
cally derived EWS to predict state transitions.

The DLM was applied to the rest of the pixels in the study area to 
identify EWS. Temporal and spatial variations in the detected EWS 
were compared with aerially observed mortality provided by the 
US Forest Service each year since 200527. Mortality noted as caused 
by fire or human activities was excluded from the analyses. As the 
forest mortality map from the aerial surveys delineates geospa-
tial polygons within which some, rather than all, of the trees died, 
whereas the EWS provides a pixel-based estimate at a 30 m resolu-
tion, the comparison may introduce errors due to the mismatch in 
spatial scales. A comparison of the EWS was also performed against 
an incidence map of ALN, which has the same resolution as EWS 
and could be associated with leaf shedding or vegetation die-off29,30. 
Hereafter, ALN represents the occurrence of NDVI values lower 
than a threshold, lasting for at least half of the time in the following 
3 months. This threshold is set equal to the lower 20th percentile 
of all of the observed NDVI values in that month at a given pixel 
location. The sensitivity analysis indicates that the conclusions 
are robust with respect to the chosen thresholds (Supplementary 
Discussion, Supplementary Figs. 20–24, Supplementary Table 3).

Fraction of the area showing EWS
During 2005–2015, the Palmer drought severity index (PDSI)31 
indicated that the state of California underwent two major droughts 
spanning 2007–2009 and 2012–2015 (Fig. 2a). For the entire study 
area, the fraction of the area with observed mortality intensity 
greater than one tree per acre27, that is, mortality area, remained 
below 2% during the first drought but rapidly increased to 6.7% 
in 2015 (Fig. 2a). This sharp increase in mortality area during the 
second drought was in contrast to the temporal variation in PDSI 
vales, which gradually increased during 2012–2014 and remained 
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Fig. 1 | An example of EWS detected using the DLM. a, NDVI time series 
of a pixel in the southern Sierra b, Mean and uncertainty range of the time-
varying autocorrelation estimated using the DLM. The EWS identified 
when the mean autocorrelation exceeds a threshold (grey dashed line) are 
shown, calculated as the long-term (excluding a two-year warm-up period) 
average of the upper boundary of the uncertainty range. Shaded time 
ranges indicate the two droughts according to the PDSI. The x axis values 
mark 1 January for each year.
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Fig. 2 | Temporal trajectories of drought severity, mortality area and EWS 
area from 2005 to 2015. a, Monthly PDSI values31 for the state of California 
(black, left y axis) and the area with tree mortality (red, right y axis) from 
annual aerial surveys. b, Proportion of the area exhibiting EWS (blue, left 
y axis) and observed tree mortality (red, right y axis). c, Proportion of the 
area exhibiting EWS (blue, left y axis) and ALN (dark red, right y axis).  
The x axis values mark 1 January for each year.
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to reduce the gross primary productivity both locally and across 
North America through eco-climate teleconnections28. A probabil-
ity distribution of autocorrelation was obtained from the DLM at 
each time point during the period 1999–2015.On the basis of the 
estimated mean and uncertainty range of autocorrelation at each 
time point, the EWS was identified as the presence of a mean auto-
correlation exceeding a threshold and lasting for at least 3 months. 
The threshold was computed as the long-term average of the 80th 
percentile of the estimated autocorrelation uncertainty range. The 
magnitude of this threshold, which is constant in time, provides a 
reference for defining the abnormal range of the EWS. An example 
application of the DLM on a pixel in the southern Sierra dominated 
by pines shows that the autocorrelation in NDVI time series became 
abnormally high, that is, exceeded the long-term average of its 80th 
percentile of the uncertainty range, after October 2012 (Fig. 1b). 
Abnormally low NDVI (ALN) that may indicate foliage shedding 
was identified in September 2014 (Fig. 1a) and eventual mortality 
was observed in July 2015. No mortality or fire was observed in 
the previous years. The presence of abnormally high autocorrela-
tion, that is, reduced resilience, from October 2012 onwards serves 
as an EWS, with lead times of 23 months and 33 months to ALN 
and mortality, respectively, in this case. Although high autocor-
relation is a typical signature of critical slowing down, it does not 
guarantee the occurrence of critical slowing down and an impend-
ing critical transition; that is, it is necessary but not sufficient. To 
further examine the representativeness of the EWS for critical 
slowing down, an independent analysis of NDVI data within the 
context of a nonlinear dynamic model of vegetation dynamics with 
two stable states was conducted. The two stable states in the model 
represent an existing vegetation cover and an alternative state19. The 
analysis suggests that during the period when an EWS was iden-
tified, the system slowed down and the basin of attraction shrank 
(Supplementary Discussion, Supplementary Fig. 15). These shifts 
represent reduced recovery rate and a higher likelihood of a switch to 
an alternative state under stochastic perturbations. The occurrence  

of critical slowing down in the NDVI data during the EWS period 
within this model provides additional support for using the empiri-
cally derived EWS to predict state transitions.

The DLM was applied to the rest of the pixels in the study area to 
identify EWS. Temporal and spatial variations in the detected EWS 
were compared with aerially observed mortality provided by the 
US Forest Service each year since 200527. Mortality noted as caused 
by fire or human activities was excluded from the analyses. As the 
forest mortality map from the aerial surveys delineates geospa-
tial polygons within which some, rather than all, of the trees died, 
whereas the EWS provides a pixel-based estimate at a 30 m resolu-
tion, the comparison may introduce errors due to the mismatch in 
spatial scales. A comparison of the EWS was also performed against 
an incidence map of ALN, which has the same resolution as EWS 
and could be associated with leaf shedding or vegetation die-off29,30. 
Hereafter, ALN represents the occurrence of NDVI values lower 
than a threshold, lasting for at least half of the time in the following 
3 months. This threshold is set equal to the lower 20th percentile 
of all of the observed NDVI values in that month at a given pixel 
location. The sensitivity analysis indicates that the conclusions 
are robust with respect to the chosen thresholds (Supplementary 
Discussion, Supplementary Figs. 20–24, Supplementary Table 3).

Fraction of the area showing EWS
During 2005–2015, the Palmer drought severity index (PDSI)31 
indicated that the state of California underwent two major droughts 
spanning 2007–2009 and 2012–2015 (Fig. 2a). For the entire study 
area, the fraction of the area with observed mortality intensity 
greater than one tree per acre27, that is, mortality area, remained 
below 2% during the first drought but rapidly increased to 6.7% 
in 2015 (Fig. 2a). This sharp increase in mortality area during the 
second drought was in contrast to the temporal variation in PDSI 
vales, which gradually increased during 2012–2014 and remained 
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varying autocorrelation estimated using the DLM. The EWS identified 
when the mean autocorrelation exceeds a threshold (grey dashed line) are 
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Fig. 2 | Temporal trajectories of drought severity, mortality area and EWS 
area from 2005 to 2015. a, Monthly PDSI values31 for the state of California 
(black, left y axis) and the area with tree mortality (red, right y axis) from 
annual aerial surveys. b, Proportion of the area exhibiting EWS (blue, left 
y axis) and observed tree mortality (red, right y axis). c, Proportion of the 
area exhibiting EWS (blue, left y axis) and ALN (dark red, right y axis).  
The x axis values mark 1 January for each year.
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mapping and ranking forest resilience at global scales



Forzieri, Dakos et al Nature (2022)
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mapping and ranking forest resilience at global scales



Bathiany, et al 2018, Science Advances

mapping – projected changes in climate variability 
as proxy for hotspots of climate instability

based on output from 37 models from CMIP5

Relative changes in variability of monthly temperature between
historical record (~1900) and model projections until 2100



Bathiany, et al 2018, Science Advances

Relative changes in variability of monthly temperature until 2100

mapping – projected changes in climate variability 
as proxy for hotspots of climate instability
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Figure 6 Alluvial plot connecting scientific domains, the performance of the early-warnings and the type of early-warning 435 
(CSD-based vs non-CSD-based). Colors indicate the performance. The size of the boxes in each column represents the 
proportion of each category. The figure is “read” from the middle column (‘performance’) to either the right (‘early-
warning type’) or the left (‘scientific domain’). The thickness of the lines are proportional to the performance that belongs 
to a certain domain (from the ‘performance’ column to the ‘domain’ column) or are proportional to the type of early-
warning (from the ‘performance’ column to the ‘early-warning type’ column). For example, for the ‘performance’ mixed 440 
(blue), studies with mixed performance where done with both CSD-based and non-CSD-based warnings (‘early-warning 
type’ column), while the CSD-based mixed were found in all domains and the non-CSD-based were split among climate, 
ecology and social sciences (‘scientific domain’ column). [‘Positive’ performance indicates there was a warning identified; 
‘negative’ no warning was identified; ‘mixed’ indicates positive and negative performances when tested in multiple datasets 
or when testing more than one early-warning in the same dataset; ‘inconclusive’ the results could not indicate neither a 445 
positive nor a negative warning.] 
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numerous approaches EWS/ well-developed theoretical framework
(mostly based on local bifurcations)

empirical application remains difficult 
(probably biased view of positive results)

monitoring resilience harder compared to mapping-ranking resilience 
(relative rather absolute measure)

novel combined approaches 
(statistical, ML)

challenge: assumption of tipping point
-Mechanisms (positive feedbacks)
-Bistability
-Irreversibility

some thoughts
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