

Technische Universität München

# Critical Transitions in the Earth System

N. Boers, S. Bathiany, N. Bochow, M. Ben-Yami, L. Blaschke, M. Ghil, D. Nian, K. Riechers, T. Smith, T. Stocker











Potsdam Climate I

#### Tipping Point Workshop, IHP Paris, Oct 4 2023





Horizon 2020 European Union funding for Research & Innovation

FE FOR ESEARCH

### Critical transitions in the Earth system: paleoclimate evidence



Paleoclimate proxy records give the only empirical evidence for abrupt climate changes

Boers, Ghil, Stocker, ERL 2022



### Critical transitions and 'slowing down'



### Critical transitions and 'slowing down'



Control parameter p

# Critical transitions and 'slowing down' $U(x) \approx -\frac{\lambda_1}{2} x^2$ System state x 'bifurcation-induced tipping' ... how can we anticipate it?





Linearization around x<sup>\*</sup> gives an Ornstein-Uhlenbeck process  $dx \approx \lambda x dt + \sigma dW$ ; discretizing then gives an AR process  $x_{n+1} = \alpha(1)x_n + \tilde{\sigma}\epsilon(t)$ ,  $\epsilon(t) \sim \mathcal{N}(0,1)$  with



### **'Critical Slowing Down'**

Callen & Welton 1951; Kubo 1966; Dakos et al., 2008; Scheffer et al., 2009; Lenton et al., 2012



#### Critical transitions and 'slowing down'









Callen & Welton 1951; Kubo 1966; Dakos et al., 2008; Scheffer et al., 2009; Lenton et al., 2012



#### Four key multistable, coupled Earth system components



#### **Central-Western Greenland Ice Sheet**





Trusel et al., Nature 2018



#### **Central-Western Greenland Ice Sheet**





a



#### Arctic and CW Greenland sea-level temperatures

### **Central-Western Greenland Ice Sheet**





Levermann & Winkelmann, TC 2016; B & Rypdal, PNAS 2021





B & Rypdal, PNAS 2021



#### **Greenland Ice Sheet**



Bochow et al, Nature (in press)

#### **Greenland Ice Sheet**





**PISM-dEBM** 

Bochow et al, Nature (in press)



#### **Remark: avoiding false positives**

Variance  $\langle \Delta x^2 \rangle$  and ACF  $\alpha(\tau)$  can increase simply because the variance and ACF of the noise term  $\eta$  increase.

Estimate  $\lambda$  directly, and use it as EWS indicator? (Here  $\lambda$  directly, and  $\lambda$  as EWS indicator? (Here  $\lambda$  directly,  $\lambda$  direc

$$\frac{d\Delta x}{dt} \approx \lambda \Delta x + \eta$$

Serial correlations of  $\eta$  bias the estimate for  $\lambda$  if obtained via LS assuming that  $\eta$  is white.

Instead, infer  $\lambda$  using Generalized Least Squares under the assumption of autocorrelated  $\eta$ :

$$\frac{d\Delta x}{dt} \approx \lambda_{cor} \Delta x + \eta^{a.c.}$$

 $\alpha(n) = e^{n\lambda\Delta t}$  $\langle \Delta x^2 \rangle = -\frac{\sigma^2}{2}$ 





#### **Remark: avoiding false positives**

Estimate  $\lambda$  directly, and use it as EWS indicator? (Held & Kleinen, 2004)

$$\frac{d\Delta x}{dt} \approx \lambda \Delta x + \eta$$

Serial correlations of  $\eta$  bias the estimate for  $\lambda$  if obtained via LS assuming that  $\eta$  is white.

Instead, infer  $\lambda$  using Generalized Least Squares under the assumption of autocorrelated  $\eta$ :

$$\frac{d\Delta x}{dt} \approx \lambda_{cor} \Delta x + \eta^{a.c.}$$

 $\alpha(n) = e^{n\lambda\Delta t}$  $\langle \Delta x^2 \rangle$ 

Variance  $\langle \Delta x^2 \rangle$  and ACF  $\alpha(\tau)$  can increase simply because the variance and ACF of the noise term  $\eta$  increase.











1870-present



1900-present

B, NCC 2021





**SST**s

Salinity

![](_page_18_Picture_6.jpeg)

![](_page_19_Figure_1.jpeg)

![](_page_19_Picture_3.jpeg)

#### BUT: Data is uncertain and coverage is highly non-stationary!

![](_page_20_Figure_2.jpeg)

![](_page_20_Figure_3.jpeg)

Ben-Yami et al., Nature Communications (accepted)

![](_page_20_Picture_5.jpeg)

BUT: Data is uncertain and coverage is highly non-stationary!

![](_page_21_Figure_2.jpeg)

Ben-Yami et al., Nature Communications (accepted)

![](_page_21_Picture_6.jpeg)

#### Impacts of collapse

Precipitation change after an AMOC collapse (ensemble mean)

![](_page_22_Figure_3.jpeg)

Ben-Yami et al., in revision

![](_page_22_Picture_6.jpeg)

![](_page_23_Figure_2.jpeg)

### Impacts of collapse on Amazon: Offsets negative global warming impacts

Nian et al., in revision

![](_page_23_Figure_5.jpeg)

**Def.** (Resilience): The ability of a system to recover from external perturbations

![](_page_24_Figure_2.jpeg)

Smith, Traxl, B, NCC 2022

![](_page_24_Picture_4.jpeg)

**Def. (Resilience):** The ability of a system to recover from external perturbations

![](_page_25_Figure_2.jpeg)

![](_page_25_Picture_3.jpeg)

![](_page_26_Figure_2.jpeg)

#### **Empirical Confirmation of the FDT:**

# For vegetation it's (sort of) ok to use the natural variability to estimate the response to large external perturbations, and hence to quantify resilience!

Smith, Traxl, B, NCC 2022

![](_page_26_Picture_7.jpeg)

![](_page_27_Figure_1.jpeg)

Smith, Traxl, B, NCC 2022

![](_page_27_Picture_3.jpeg)

![](_page_28_Figure_1.jpeg)

![](_page_28_Figure_2.jpeg)

Smith, Traxl, B, NCC 2022; Smith & B, Nat. Comm's 2023

![](_page_28_Picture_4.jpeg)

### **CAUTION:**

- Merged multi-sensor datasets induce biases and should be a avoided

![](_page_29_Figure_4.jpeg)

#### • Optical indices such as NDVI / EVI etc are problematic over dense vegetation

## **MODIS NDVI** (single-sensor data)

Smith et al., ESD 2022; Smith & B, Nature Ecology & Evolution 2023

![](_page_29_Picture_9.jpeg)

![](_page_29_Picture_10.jpeg)

#### Amazon rainforest

Vegetation density (tree cover fraction) vs. mean annual precipitation (MAP):

Amazon ecosystem bistable for intermediate MAP regimes?

![](_page_30_Figure_3.jpeg)

#### 'space-for-time':

$$U_p(x) = -\frac{\sigma^2}{2} \log(\rho_p(x))$$
$$\dot{x} = U'_p(x) + \eta$$

Hirota et al., 2011

![](_page_30_Picture_7.jpeg)

#### **Amazon rainforest**

### **Resilience loss confirmed from single-sensor VOD**

![](_page_31_Figure_2.jpeg)

![](_page_31_Picture_3.jpeg)

Boulton, Lenton, B, NCC 2022; Blaschke et al., in review

#### **Amazon rainforest**

#### role of mean annual precipitation

![](_page_32_Figure_2.jpeg)

Resilience loss stronger in drier places and closer to human activity!

#### role of distance to human activity

Brazil Distance to Human Land Use or Roads

![](_page_32_Figure_6.jpeg)

Boulton, Lenton, B, NCC 2022

![](_page_32_Picture_8.jpeg)

#### Amazon rainforest & South American Monsoon

Via evapotranspiration and precipitation, the Amazon rainforest exchanges moisture with the atmosphere. Initial tree mortality or deforestation will reduce this moisture recycling!

![](_page_33_Figure_2.jpeg)

$$A_{i} = E_{i} - P_{i} + \frac{W_{i-1}A_{i-1} - W_{i}A_{i}}{l}$$

$$S_i = P_i - E_i - R_i$$

$$W_i = W_i^{trade} + W_i^{LH} \propto \overline{p_{Amazon}} - p_{coast}$$

B et al., 2017

![](_page_33_Picture_8.jpeg)

#### Amazon rainforest & South American Monsoon: Impacts of Deforestation

![](_page_34_Figure_1.jpeg)

Spracklen & Garcia-Carreras 2015

Bochow & B., Science Advances 2023

![](_page_34_Picture_6.jpeg)

#### Amazon rainforest & South American Monsoon: Impacts of Deforestation Statistical EWS in simulations

![](_page_35_Figure_1.jpeg)

Bochow & B., Science Advances 2023

![](_page_35_Picture_3.jpeg)

#### Amazon rainforest & South American Monsoon: Impacts of Deforestation

CSD in monthly rainfall rates (reanalysis and observations)

![](_page_36_Figure_2.jpeg)

![](_page_36_Figure_3.jpeg)

Bochow & B., Science Advances 2023

![](_page_36_Picture_5.jpeg)

#### Amazon rainforest & South American Monsoon: Impacts of Deforestation **Physical EWS:**

#### Increasing dry-season length

![](_page_37_Figure_2.jpeg)

**Decreasing Soil moisture** 

![](_page_37_Picture_4.jpeg)

![](_page_37_Picture_5.jpeg)

#### Conclusions

- Paleoclimate records and theory suggest climate tipping events are possible
- Empirical data suggests that stability of some multistable Earth system components has been decreasing but uncertainties are too large to predict tipping times

BUT

- Observational records are short -> information on Tipping Elements is limited
- Climate models exhibit considerable spread and appear to be too stable ->
  Predictions of tipping points and their impacts uncertain

### Outlook

# ClimTip

Uncertainty-aware Quantification of climate tipping potential and climatic, ecological, and socioeconomic impacts (2024-2028)

• Improve representation of Tipping Elements in Earth System Models, e.g. using rareevent and CSD techniques

- operating spaces
- biodiversity, society & economy

We'll have a TP conference at the IHP in 2025 :)

![](_page_39_Picture_7.jpeg)

• Constrain position of critical forcing thresholds ("tipping points") to identify safe

• High-resolution simulations of impacts of major tipping events on climate, ecosystems,

![](_page_40_Picture_0.jpeg)

Technische Universität München

### boers@pik-potsdam.de

This work has received funding from the VolkswagenStiftung and the European Union's Horizon 2020 research and innovation programme under grant agreement No. 820970

![](_page_40_Picture_6.jpeg)

![](_page_40_Picture_7.jpeg)

![](_page_40_Picture_8.jpeg)

![](_page_40_Picture_9.jpeg)

![](_page_40_Picture_10.jpeg)

Potsdam Institute for Climate Impact Research

# Thank you!

#### n.boers@tum.de

![](_page_40_Picture_14.jpeg)

![](_page_40_Picture_15.jpeg)

European Commission Horizon 2020 European Union funding for Research & Innovation