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Tipping points and bifurcations

Henri Poincaré taught us a great deal about how to understand the dynamical
behaviour of models given by autonomous ODEs:

ẋ = f (x), (1)

where x ∈ Rn is some (possibly high dimensional) state space. We are usually
interested in solving an initial value problem where x(0) = x0. He discovered that
if f (x) is a nonlinear function of state then the solution x(t) can have a sensitive
dependence on x0.
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A general nonlinear ODE may be multistable, i.e. have several different
identifiable asymptotic states that “typical” solutions of the IVP will converge
towards; these are the attractors of the system.

It turns out to be helpful to explore parameter-dependent solutions of bifurcation
problems:

ẋ = f (x , λ), (2)

where λ is a (vector of) real parameters.

Typical attractors are robust, i.e. will persist for small changes in λ, but at
bifurcation points the set of attractors changes in a qualitative way.
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In general, one cannot find solutions x(t) of nonlinear differential equations

ẋ = f (x)

for x ∈ Rn and even quite simple functions f with n small. Possible ways forward
are:

Option 1: Use numerical approximation.

Option 2: Find simple solutions (equilibria, periodic orbits) and determine
their stability.

Unfortunately option 1 may give much data but not give much insight, and option
2 may not tell us about the ‘typical solutions’ that we want to know about.
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Local bifurcation theory deals with equilibria (also known as steady solutions
or singular points), i.e. x0 such that

f (x0, λ) = 0.

Equilibria typically come in branches i.e. (X (λ), λ) parametrized by the
bifurcation parameter. There may be many branches at any given λ.

We usually express the bifurcation pattern in a bifurcation diagram which
plots some measure of the solution x (vertical axis) against the parameter
(horizontal axis). A branch is plotted as a smooth line on such a diagram.

Typical choices for the vertical axis are: one of the coordinates of x ; a norm
of x but any smooth observable of x may be shown.
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Linear stability of equilibrium (X , 0) . can be found by examining J = Df (X , 0)
the Jacobian of equilibrium solution:

If no eigenvalues of J are on the imaginary axis, then we say X is hyperbolic
and (X , 0) is a point on a branch of equilibria.

If at least one eigenvalues of J are on the imaginary axis, then we say X is at
a bifurcation and more than one branch may meet at (X , 0).

For typical choice of f the only generic bifurcations are following:

Saddle-node bifurcation where there is a single zero eigenvalue of J.

Hopf bifurcation where there is a single pure imaginary pair of eigenvalues of
J.
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Saddle-node bifurcation

Normal form of a saddle-node bifurcation in one dimension

ẋ = λ− x2 (3)

Two equilibria for λ > 0, one for λ = 0 and none for λ < 0.

λ

x stable

unstable
Bifurcation diagram
The same bifurcation diagram (up to reflection in x and/or λ) holds for ALL
saddle-node bifurcations. Equation (3) is the normal form for a saddle-node
bifurcation.
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Hopf bifurcation

Normal form of a Hopf bifurcation in two dimensions z = x + iy :

ż = (λ+ iω)z − |z |2z (4)

One equilibrium for all λ. A periodic orbit appears on increasing λ through zero.

λ

x

y

stable periodic orbit

stable
eqm

unstable eqm

Bifurcation diagram
The same bifurcation diagram (up to coordinate changes) holds for ALL Hopf
bifurcations. Equation (4) is the normal form for a Hopf bifurcation.
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What is meant by a bifurcation problem being generic?

There is always an implied context for a system, for instance if

ẋ = f (x , λ)

is a model of a simple physical system with x , λ ∈ R then we hope that the
predictions of the model are not sensitive to small details in the specification of f .

Suppose that f ∈ C∞(R,R) is a particular function, then unless we have a
compelling reason to believe that f must have a special property (such as oddness
f (−x) = −f (x)), we assume that is has no such property.
Formally, let P(f ) be some property of a f ∈ C∞.

We say the property P is generic if it holds on an open dense subset of C∞.

Otherwise we say it is non-generic.

Genericity depends on context!
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Let A be the set of all smooth functions f : R→ R.

Let As ⊂ A be the set of all symmetric (i.e. odd) smooth functions f : R→ R.

It is not generic for f ∈ A to be also in As , i.e. to be an odd function.

It is generic for f ∈ A to be non-constant.

It is generic for f ∈ As to have a simple zero at x = 0.

It is not generic for f ∈ A to have any zero.

BUT: It is not generic for f ∈ A to have no zero.

If we assume there is no special structure/symmetry, the only bifurcations are
saddle-node and Hopf. If however we know there are special structures in the
model, there may be other bifurcations that become generic
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Instabilities of nonautonomous systems

”Autonomous systems are all alike; each nonautonomous system is
nonautonomous in its own particular way.”

Many applications require an understanding the dynamical behaviour of
nonautonomous systems

ẋ = f (x ,Λ(rt)), (5)

However, many methods are only applicable to autonomous systems of the form

ẋ = f (x , λ). (6)

Clearly if r > 0 is small then we expect (6) to give a lot of information about (5).
In particular we expect bifurcations to be key for small r > 0. Other effects such
rate-induced tipping can appear for larger r .
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For nonautonomous systems, various types of instability can independently occur
when a dynamical system is subjected to time-varying inputs. This includes:

Bifurcation-induced tipping (B-tipping) in response to slowly varying inputs.

Noise-induced tipping (N-tipping) in response to large deviations in noise.

Rate-induced tipping (R-tipping) when time-variation of input parameters of
a dynamical system interacts with system timescales to give genuine
nonautonomous instabilities.

Such instabilities appear as the input varies at some critical rates and cannot, in
general, be understood in terms of autonomous bifurcations in a frozen system.

In typical situations more than one type of tipping effect may be present.

[A, Cox, Vitolo, Wieczorek 2012]
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We say Λ is a parameter shift if

Λ(s)→ λ±

as s → ±∞.
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Examples of Λ(s) ∈ P(−2, 2).
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A solution x(t) of the nonautonomous system is a (point, local) pullback attractor
if there is a bounded open set U ⊂ Rn with the following property: for any y ∈ U
and t ∈ R

|Φt,t−s(y)− x(t)| → 0 as s →∞

where Φt,u(y) is the solution evolved from being at location y at time u forward
to time t > u.

If a x(t) is a stable solution for λ−, there is a there is a unique trajectory x̃pb(t)
with

x̃pb(t)→ X− as t → −∞.

[Chekroun, Simonnet and Ghil,2011]
[A, Perryman and Wieczorek, 2017]
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Bifurcation diagrams showing stable (black solid lines) and unstable (black dashed
lines) equilibria for a system with λ between λ− = −1 and λ+ = +1. The red
lines show the pullback attractor starting at X− for parameter shifts on varying
the rate r . (a) For r < r1 the pullback attractor end-point tracks the branch
through to X+. (b) There is a range of rates r1 < r < r2 where the pullback
attractor R-tips to Y+. (c) For r > r2 the pullback attractor again end-point
tracks the branch through to X+.
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Other examples of rate-dependent effects, e.g. partial tipping of an ensemble:

An ensemble of 150 runs of an energy balance climate model with chaotic forcing
and instantaneous albedo relaxation. An abrupt CO2 quadrupling is applied for 75
years, after which the initial CO2-level is restored. [Bastiaansen, A & von der
Heydt 2023]
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Example: tipping between chaotic attractors

The double scroll circuit, introduced by Chua et al. is

ẋ1 = F1(x1, x2, x3) := a(x2 − φ(x1))

ẋ2 = F2(x1, x2, x3) := x1 − x2 + x3

ẋ3 = F3(x1, x2, x3) := −bx2

(7)

for x = (x1, x2, x3) ∈ R3, with

φ(x1) =
1

16
x3

1 −
1

6
x1.

We choose parameters where there is bistability between two attractors: a “double
scroll” chaotic attractor, and a large-amplitude limit cycle.

[A & Newman 2021]
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Double scroll system (7) showing a chaotic attractor A1 (purple) enclosed within a
tube-like basin of attraction with boundary shown in red. An initial condition
outside the basin approaches (cyan) a large amplitude limit cycle A2 (black).

Movie
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Consider double scroll system with shift

ẋ = F (x − Λ(rt)(1, 1, 0)) (8)

where
Λ(t) =

σ

2
(1 + tanh(t)) . (9)

In the limit r � 1, (8) has discontinuous right hand side:

F (x − Λ(rt)(1, 1, 0)) =

{
f −(x) for t < 0

f +(x) for t > 0
(10)

where
f −(x) = F (x), f +(x) = F (x − (σ, σ, 0)).
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Numerics: many trajectories starting in basin of past limit attractor at T = −40
(approximation of physical measure) for r = 0.82;

Tracking
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Numerics (approximation of physical measure) for r = 1;
Partial Tipping
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Numerics (approximation of physical measure) for r = 2.98:
Total Tipping
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Parameter shifts involving chaotic attractors

Write the solution x(t) of the nonautonomous system

ẋ = f (x ,Λ(rt)), (11)

with x(s) = x0 and t > s as a process

x(t) = Φ(r)(t, s, x0)

for any t > s. We consider a parameter shift Λ(t) where limt→±∞ = λ±.

For the frozen system
ẋ = f (x , λ), (12)

we can write the solution as a flow x(t) = ϕλ(t − s, x(s)) for any t > s and fixed
λ; we write ϕλ± for the future/past limit systems respectively.
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For each asymptotically stable attractor A− for the past limit system there is a
local pullback attractor for (11) whose (upper) backward limit is contained in A−
[Alkhhayuon & A 2018].

We construct a pullback attractor by:

A
[Λ,r ,A−]
t :=

⋂
τ>0

⋃
s≤τ

Φ(t, s,Nη(A−)) (13)

for small η > 0. If A− is an equilibrium then shows that the pullback attractor is a
single trajectory or so-called pullback attracting solution.
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For a uniformly exponentially stable branch A(λ) that contains an attractor of the
past limit system A− := A(λ−) and for sufficiently small positive r , the pullback
attractor end-point tracks the branch to A(λ+).

This tracking is not guaranteed for large values of r > 0 or where a stable branch
is weakened to a stable path. Rate-induced transitions take place when this
tracking breaks.

[Alkhayuon & A 2018] investigate A− periodic attractors and note there is a
rate-induced transition from tracking to partial tipping and another to total
tipping.
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Nonautonomous Physical Measures

An empirical measure µT ,x0 for an autonomous flow ϕ is defined for any
measurable set S as

µT ,x0 (S) =
`({t ∈ [0,T ] : ϕ(t, x0) ∈ S})

T
.

This can be used to define “natural” or “physical” measures as a limit point of
such measures:

Given an attractor A of an autonomous ODE with basin of attraction B, a
physical measure on A is a probability measure µ with supp(µ) = A such that for
Lebesgue-almost every x0 ∈ B, as T →∞ the empirical measure µT ,x0 converges
weakly to µ.
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To generalize to a nonautonomous setting, [A & Newman 2021] use a stronger
notion of attraction:

Given an attractor A of (6) with basin of attraction B, an “attracting measure” is
a physical measure µ supported on A such that for every probability measure ν0

absolutely continuous w.r.t. Lebesgue where the density h ∈ L1(Rd) is supported
within B, then

νT (S) :=

∫
S

(Lϕ(T )h)(y) dy =

∫
Rd

1S(ϕ(T , x))h(x) dx

converges weakly to µ as T →∞.
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We define nonautonomous attractors and physical measures relative to a given
local attractor A− of the past limit system (with basin B−):

For the nonautonomous system (5), a pullback attractor starting at the attractor
A− of the past limit is a nonautonomous invariant set A = {A(t)} such that:

(1)
⋃

t∈R A(t) is bounded, and for each t ∈ R, A(t) is closed;

(2) for any bounded neighbourhood U of A− with Ū ⊂ B−, for each t ∈ R and
ε > 0, taking sufficiently large-magnitude s < 0 gives

A(t) ⊂ Φ(r)(t, s,U) ⊂ Bε(A(t)).
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We define the nonautonomous empirical measure:

µτ,τ−T ,x0 (S) =
`({t ∈ [τ − T , τ ] : Φ(r)(τ, τ − T , x0) ∈ S})

T
.

Given an attractor A− for the past limit system and a pullback attractor A
starting at A−, a physical measure on A is a probability measure µ on A such
that supp(µt) = A(t) at each t ∈ R and for Lebesgue-almost every x0 ∈ B, the
empirical measure µt,t−T ,x0 converges weakly to µt a T →∞.
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A pullback-attracting measure on A is a probability measure µ on A such that
supp(µt) = A(t) at each t ∈ R and for every probability measure ν0 of smooth
density h supported within B, for each t ∈ R, as T →∞ the measure
νtT := Φ(r)(t, t − T , ν0) converges weakly to µt .

In [Newman & A 2023] we give sufficient conditions on such a scenario that
pullback attracting physical measures exist. These involve assuming

(a) Mixing properties of the past limit measure so that the physical measure
attracts other a.c. measures supported within the basin and

(b) Exponential convergence properties of the measures (and their support) in
the limit T →∞.
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In [Newman & A 2023] we first start in the autonomous setting (applied to the
past-limit system Ψt

∗ acting on Borel probability measures with Wasserstein
distance dW ). We say that µ is:

an attracting measure of the past-limit system if there exists a neighbourhood
U ⊂ X of P such that for every Lebesgue-absolutely continuous probability
measure λ with λ(U) = 1, λ is attracted to µ under (Ψt

∗);

a physical measure of the past-limit system if there exists a neighbourhood
U ⊂ X of P such that for Lebesgue-almost all x ∈ U, δx is Cesàro-attracted
to µ under (Ψt

∗);
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Suppose µ is an attracting measure of the past limit system with support P. An
orbit (µt) of (Φs,t∗) is called

an attracting measure rooted at µ if there exists a neighbourhood U ⊂ X of
P such that for every Lebesgue-absolutely continuous probability measure λ
with λ(U) = 1, λ is pullback-attracted to (µt) under (Φs,t∗);

a physical measure rooted at µ if there exists a neighbourhood U ⊂ X of P
such that for Lebesgue-almost all x ∈ U, δx is pullback-Cesàro-attracted to
(µt) under (Φs,t∗).
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Suppose ν(λ) is a family of invariant measures for the frozen systems with
support Q(λ) that limit to an attracting measure µ with support P for
Λ(t)→ λ−∞ as t → −∞.

Theorem

(A) Suppose dW (ν(Λ(t)), µ) = o(e−r |t|) and dH(Q(Λ(t)),P) = o(e−r |t|) as
t → −∞. Then there exists an orbit (µt) of (Φs,t∗) such that µ is
pullback-attracted to (µt) under (Φs,t∗).

(B) Suppose, moreover, that maxx∈X |f (.,Λ(t))− f (., λ−∞)| = o(e−r |t|) and P is
Lyapunov-stable under the past-limit system. If µ is an attracting measure
(resp. physical measure, weakly physical measure) of the past-limit system,
then (µt) is an attracting measure (resp. physical measure, weakly physical
measure) rooted at µ.

[Newman & A 2023]
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Strategy of proof:

For (A), we show that there exists a closed neighbourhood O of P and a value
T ∗ ≤ 0 such that, writing O := {λ ∈ MX : λ(O) = 1}, (O,T ∗, ν) is a
”Monotone-like Nonautonomousness Controller” (MLNAC) of (MX , dW , (Φs,t∗))
that gives bounds near µ of rate r and (O,T ∗) is a ”Growth Controller” (GC) of
(MX , dW , (Φs,t∗)) of rate r ; this can be used to give the desired estimates.

For (B), we show that there exists a neighbourhood U of P such that for every
λ ∈ MX with λ(U) = 1,

λ is pullback-eventually in O under (Φs,t∗);

if λ is attracted (resp. Cesàro-attracted) to µ under (Ψt
∗), then λ is

past-attracted (resp. past-Cesàro-attracted) to (µt) under (MX , dW , (Φs,t∗))
with nonautonomous error of decay rate r .
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Tipping between past and future attractors

Given a number of past and future attractors, physical measures allow one to
define a notion of probability of tipping between these attractors. Suppose that:

A1 The past limit system has an attractor A−

A2 The nonautonomous system admits a pullback attractor A starting at A−,
and there is a physical measure µ on this pullback attractor.

A3 The future limit system has disjoint attractors A+
1 , . . . ,A

+
n+

with basins of

attraction B+
1 , . . . ,B

+
n+

that exhaust Lebesgue measure.

A4 The A+
j are Lyapunov stable.

A5 The physical measure “does not get caught” on the boundaries of B+
j .
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Theorem

Consider the assumptions as above. Then

(A) For each j ∈ {1, . . . , n+}, the limit

pj := lim
t→∞

µt(B
+
j )

exists, and for every neighbourhood U of A+
j with U ⊂ B+

j we have

pj = lim
t→∞

µt(U).

(B) We have
∑n+

j=1 pj = 1.

We call the value pj the probability of tipping from A− to A+
j for each

j ∈ {1, . . . , n+}.

[A & Newman 2021]
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Returning to the Double scroll with parameter shift:
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Tipping probability from chaotic A−1 to periodic A+
2 attractor for the double scroll

system with parameter shift. (Left) σ = 1: asymptotically fast shift still gives
partial tipping, corresponding to the attractor A−1 partially intersecting the basin

of A+
1 . (Right) σ = 2.
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Points in x1 = 0 at time T that are asymptotic to the future chaotic attractor A+
1

(blue) and the future periodic attractor (yellow), for the double scroll system with
parameter shift for σ = 2 and r = 1.5.

Panels correspond to T = −10, T = −5 and T = 0 respectively.
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Points in x1 = 0 at time T = −10 asymptotic to the future chaotic attractor A+
1

(blue) and the future periodic attractor (yellow) for different rates (left) r = 1,
(mid) r = 1.5, (right) r = 2.

The red points show a section through the pullback attractor at this time.
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Discussion and future challenges

Some challenges for the future:

(a) Gain a better theoretical understanding of nonautonomous physical measures.

(b) Understand cases where a physical measure splits into the basin of several
future attractors.

(c) Understand thresholds and edge states in cases where it splits.

(d) Understand implications for multiscale chaotic systems.

(e) Use these insights to improve the science of ensemble forecasts.

Supported through EPSRC project EP/T018178/1 and the European Union’s
Horizon 2020 research and innovation programme under grant agreement No
820970 (TiPES).
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