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What are sub-seasonal forecasts? (White et al., 2017)
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Why sub-seasonal forecasts? (White et al., 2017)

Interesting 
dynamical 
problem 

+
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Potential use of S2S forecasts in energy sector

➔Risk assessment
➔Determine capacity reserve level
➔Schedule maintenance
➔Trading/hedging
➔Estimate grid transmission capacity

E.g. Dubus (2014), White et al. (2017)
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Observables of interest here
● Meteorological variables rather than 

application-specific variables to provide 
baseline measure of skills:
● 2m air temperature (T2m)

→ mind the trend!
● 100m wind speed (W100m)

→ mind the height!
● Winters (DJF)
● Weekly averages
● Max lead time: week 6
● Europe
● Grid-point scale (0.9°/2.7°)
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Selected literature on direct NWP forecasts

● Surface temperature:
Vitart (2014), Buizza & Leubecher (2015), 
Monhart et al. (2018), Büeler et al. (2020), 
Dorrington et al. (2020)

● Wind speed:
Lynch et al. (2014), Lledó & Doblas-Reyes 
(2020), Büeler et al. (2020)

Ground-based stations
≠ Domain

≠ Metric
Need for updates

10m instead of 100m
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Why more than direct NWP forecasts?
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Why more than direct NWP forecasts?
● If there is a strong dependence between a surface field 

of interest and another field that is forecast better
→ Complement direct forecast with information transferred 
from dependent field using supervised learning

Schepen et al. (2012, 2014, 2016), Orth & Seneviratne (2014), Alonzo et al. 
(2017), Kämäräinen et al. (2019), Strazzo et al. (2019), Ramon et al. (2021)
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Why more than direct NWP forecasts?
● If there is a strong dependence between a surface field 

of interest and another field that is forecast better
→ Complement direct forecast with information transferred 
from dependent field using supervised learning

Schepen et al. (2012, 2014, 2016), Orth & Seneviratne (2014), Alonzo et al. 
(2017), Kämäräinen et al. (2019), Strazzo et al. (2019), Ramon et al. (2021) 

● If the dependence is nonlinear
→ Add nonlinearities in statistical model using 
Convolutional Neural Networks (CNN)

Höhlein et al. (2020) 
● If there is a weak dependence between ensemble 

forecasts model errors from different NWP models
→ Aggregate ensembles from multiple models using 
ensemble barycenters

Ning et al. (2014), Robin et al. (2017, 2019), Papayiannis et al. (2018), Vissio 
& Lucarini (2018), Vissio et al. (2020)
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Research questions

I. Are the dynamical European sub-seasonal predictions of wind 
speed and temperature more skillful than climatology?

                                                      NWP T2m + W100m N. Goutham et al., 2022
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Research questions

I. Are the dynamical European sub-seasonal predictions of wind 
speed and temperature more skillful than climatology?

                                                      

II. Can these predictions be improved by using machine learning to 
combine direct forecasts with information from other fields?

                                            
III. Is the relationship between these fields linear at these horizons?

IV. How to efficiently combine ensemble sub-seasonal forecasts from 
different NWP models?

                                    

NWP T2m + W100m N. Goutham et al., 2022

NWP + ML T2m + W100m N. Goutham et al., 2023

NWP + ML-Deep W100m G. Tian, on-going

NWP (+ ML) + MME T2m C. Le Coz, on-going
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Common methodology: data types

● Reforecasts (hindcast) from S2S project (ECMWF/NCEP) to:
● Compute climatology
● Compute trend
● Calibrate
● Train (Goutham: 1999-2016, Tian:1994-2014)

● Forecasts from S2S project (ECMWF/NCEP) as inputs to:
● Train (Le Coz: 2015-2022)
● Test (Goutham: 2016-2020, Tian: 2016-2021, Le Coz: 2015-2022)

● Reanalysis (ERA5/MERRA-2) as target (reference) to
● Train
● Test

● Continuous Rank Probability Score (CRPS) as
● Loss function
● Skill score

Vitart & Robertson (2018)
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Common methodology: calibration and preprocessing

T2mW100m
Forecast

T2m/W100m
reanalysis

Calibration

T2m/W100m
(re)forecast

Calibrated
(re)forecast Preprocessing Processed

(re)forecast

● Calibration (statistics):
● Mean-variance adjustment 

(Leung et al. 1999)
● Preprocessing:

● Remove trend
● Remove seasonal cycle
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Common methodology: skill scores (accuracy)

Based on Continuous 
Rank Probability 
Score (CRPS)
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Common methodology: skill scores (accuracy)

Based on Continuous 
Rank Probability 
Score (CRPS)

● Average CRPS Skill 
Score (CRPSS):

 CRPSS=1−
⟨CRPS forecast ⟩

⟨CRPSclimatology ⟩
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Common methodology: skill scores (accuracy)

Based on Continuous 
Rank Probability 
Score (CRPS)

● Average CRPS Skill 
Score (CRPSS):

 
● Proportion of Skillful 

Forecasts (CRPSp):

CRPSS=1−
⟨CRPS forecast ⟩

⟨CRPSclimatology ⟩

CRPSp=
# {CRPS forecast>CRPSclimatology }
# {CRPSclimatology }

×100
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I. Are the dynamical European sub-
seasonal predictions of wind speed 
and temperature more skillful than 

baseline climatology?
Goutham et al., 2022. How Skillful Are the European Subseasonal Predictions 
of Wind Speed and Surface Temperature? Mon Wea Rev 150, 1621–1637. 
https://doi.org/10.1175/MWR-D-21-0207.1

https://doi.org/10.1175/MWR-D-21-0207.1
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I. Methodology: computing scores w.r.t. reanalysis

T2mW100m
Forecast

Preprocessed
reanalysis

Skill score 
function

Processed
(re)forecast

Skill score
result
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I. Results: Europe average CRPSS
T2m W100m

● T2m: significant skills up to 6 weeks (p < 5%) on average
● W100m: significant skills up to 3 weeks on average
● T2m skills generally better than W100m
● Also true for CRPSp
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I. Results: map of CRPSp for temperature

● Skill at the scale of grid-point (0.9°x0.9°) [more blue/green]
● Better skill over eastern Europe [more blue/green east]
● Better skill in Winter than in Summer [more blue in top]

Winter

Summer
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I. Conclusions

➔IFS forecast skill can go up to 6 weeks encouraging applications
➔ Skill of 2m-temperature > 100m-wind speed
➔ Seasonal variations in relative skills:

➔2m-temperature: winter > summer > spring/autumn
➔100m-wind speed: winter > summer/autumn > spring

➔ Spatial pattern in skills:
➔2m-temperature: eastern Europe > western Europe
➔100m-wind speed: northern Europe > southern Europe

➔Forecasts > reforecasts because of larger ensemble
➔Skills beyond 2 weeks for lower and upper terciles
➔Limitation: forecast-reanalysis probabilistic dependence
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II. Can these predictions be improved 
by using machine learning to combine 
direct forecasts with information from 

other fields?
Goutham et al., 2023. Statistical Downscaling to Improve the Subseasonal 
Predictions of Energy-Relevant Surface Variables. Mon Wea Rev 151, 275–296. 
https://doi.org/10.1175/MWR-D-22-0170.1

https://doi.org/10.1175/MWR-D-22-0170.1
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II. Methodology: downscaling forecast information
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II. Methodology: downscaling forecast information

Processed
reanalysis

z500 Model
training

Processed
reanalysis

T2m/W100m

Model state

● Training: learn relationship between z500 and W100m

● Statistical prediction: apply model to z500 and combine
Processed

(re)forecast)
z500

Apply model

Processed
(re)forecast

T2m/W100m

Statistical 
prediction

T2m/W100m

Combine
Hybrid 

prediction
T2m/W100m
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II. Methodology: redundancy analysis

● Multi-output least squares on a linearly truncated basis
● Truncate to maximize average coefficient of determination
● Like canonical component analysis but different 

normalization

E.g. von Storch & Zwiers (1999)
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II. Methodology: comparing PCA and RDA patterns
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II. Methodology: comparing skills of
PCA  / RDA regression

● T2m

● W100m

→ RDA more skillfull than PCA
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II. Results: map of CRPSp for W100m

→ Hybrid > Dynamical > Statistical [more blue in HY than DY],
     especially at long lead time.
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II. Conclusions for both W100m and T2m

➔RDA patterns show a significantly higher explanatory power than 
the PCA counterparts

➔Hybrid predictions are significantly more skillful than either 
dynamical or statistical predictions alone.

➔The added value of hybrid predictions increases with lead time.
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III. Is the relationship between these 
fields linear at these horizons?
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IV. How to efficiently combine 
ensemble sub-seasonal forecasts from 
different NWP models?
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MME methods have been shown to improve forecast skill
● Complementary skill
● Better estimate the forecast uncertainty

- Larger ensemble
- Take into account model uncertainties 

• Hagedorn, R., Doblas-Reyes, F.J. and Palmer, T.N., 2005. The rationale behind the success of multi-model ensembles in 
seasonal forecasting – I. Basic concept. Tellus A: Dynamic Meteorology and Oceanography, 57(3), p.219–233.

• Casanova, S., and B. Ahrens, 2009: On the Weighting of Multimodel Ensembles in Seasonal and Short-Range Weather 
Forecasting. Mon. Wea. Rev., 137, 3811–3822,

IV. Motivation of Multi-Model Ensembles (MME)
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● Ensemble forecast = discrete probability distribution

IV. Opportunities from probabilist framework

?
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What is the barycenter of two distributions μ1 and μ2 ?

where d is a distance.

μb=argmin [d (μ , μ1)2+d (μ , μ2)2]

IV. Methodology: barycenter of distributions
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IV. Methodology: pooling barycenter

L2 distance: d (μ1 ,μ2)=‖μ1−μ2‖=(lim (μ1(x)−μ2(x))
2dx )1/2
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IV. Methodology: Wasserstein barycenter

➔ Wasserstein distance: minimum average transport cost

Optimal transport (horizontally):

 

d (μ1 ,μ2)=W 2(μ1 ,μ2)

Source: R. Flamary lectures
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IV. Methodology: Wasserstein barycenter

➔ Wasserstein barycenter: μW 2
=argmin(W 2

2(μ ,μ1)+W 2
2(μ , μ2))
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What is the barycentre of two distributions μ1 and μ2 ?

where 
- d is a distance
-  0≤α≤1 is a constant weight

Learn weight(s) from a training dataset

  

μb=argmin [α . d (μ ,μ1)2+(1−α) . d (μ ,μ2)2]

IV. Methodology: weighted barycenter  with machine-
learned weights
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IV. Methodology: combining ECMWF IFS and NCEP

● The S2S database of sub-seasonal ensemble forecast from 11 centers

● Reference: MERRA-2 (reanalysis)

ECMWF NCEP

Ensemble size 50 15

Time range Days 0-46 Days 0-44

Frequency 2/weeks Daily
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IV. Results: spatial average

• L2-barycenter best w.r.t. CRPSS
• W2-barycenter best w.r.t. proportion of skillful forecasts

➔ Best model depends on the score, but improvement w.r.t. to single model
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IV. Results: grid-point scale

CRPSS Proportion of skillful 
forecasts

➔ Best model depends on the score

➔ Best model also depends on the locations
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IV. Conclusions

➔ Multi-model ensemble generally improve on single-model forecast.

➔ Best combination method depends on the score (and location).

➔ The model’s weight α is critical (large impact on the scores).

Next steps:
➔ Application of the barycenters to several models
➔ Temporal weights
➔ Barycenters to combine inputs/outputs in downscaling approach 



47

General perspectives for discussion

● Sub-seasonal predictability potential confirmed for presented 
observables and domain

● Many factors entering predictions (preprocessing, downscaling, input 
variables, training period…) depending on scores → can we do better 
than trial-and-error?

● Compatibility issues between parameters of different model 
simulations (different ensemble sizes in particular)

● Relevance of skill improvement depend on application (e.g. 
application to wind droughts in N. Goutham PhD thesis)

● What is the extra economic/ecological cost of machine learning?
→ Balance between dynamics and statistics in a sufficient 
forecasting system ?
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Thank you!

Contact: alexis.tantet@lmd.ipsl.fr
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Appendix
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Redundancy analysis mathematical formulation
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Barycentre with the Wasserstein distance

➔ Wasserstein barycentre: μW 2
=argmin(W 2

2(μ ,μ1)+W 2
2(μ , μ2))
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Results: Brier score decomposition for first tercile 

• L2-barycentre has a better reliability.

• W2-barycentre has a better resolution.
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