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Improving dynamical sub-seasonal
forecasts with machine learning
and ensemble barycenters

Anastase Charantonis, Rémi Flamary, Naveen Goutham, Camille Le
Coz, Riwal Plougonven, Peter Tankov, Alexis Tantet, Ganglin Tian



I What are sub-seasonal forecasts? (White et al., 2017)

WEATHER FORECASTS
predictability comes from initial
atmospheric conditions

S$2S PREDICTIONS

predictability comes from initial
atmospheric conditions, monitoring the
land/sealice conditions, the stratosphere

excellent and other sources
SEASONAL OUTLOOKS
-l predictability comes primarily from
— QOOd sea-surface temperature conditions;
C% accuracy is dependent on ENSO state
5 .
< fair
O
Ll
o
O poor
L
Zero
Daily values
1-10 days Weekly averages
30-90+ days

FORECAST RANGE



I Why sub-seasonal forecasts? (White et al., 2017)

USER NEEDS
Reliable and actionable information for decision-making

MEDIUM EXTENDED
RANGE RANGE (S2S)

I nte re Sti ng 3-10 DAYS 10-30 DAYS
dynamical =

I‘ r \ SHORT- TO MEDIUM-RANGE LONG-RANGE

p ro b | e WEATHER-INFLUENCED ACTIONS WEATHER-INFLUENCED ACTIONS
* issue warnings « start monitoring forecasts
e distribute humanitarian aid s update contingency plans
e evacuation e inform strategic planning decisions

S2S WEATHER-INFLUENCED ACTIONS

« continue monitoring forecasts * supplement financial risk strategies

* update community warnings e inform loss scenarios

* initiate preparedness activities * update peak energy demand scenarios

* revise water allocations * pre-positioning of disaster response materials
* activate water conservation practices * implement irrigation, pesticide or fertilizer

schedules



Potential use of S2S forecasts in energy sector

> Risk assessment

> Determine capacity reserve level
>Schedule maintenance -
> Trading/hedging

=>»Estimate grid transmission capacity ]\ ‘ '

o= T S —

E.g. Dubus (2014), White et al. (2017)



Observables of interest here

 Meteorological variables rather than
application-specific variables to provide
baseline measure of skills:
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Selected literature on direct NWP forecasts

 Surface temperature:

Vitart (2014), Buizza & Leubecher (2015), Ground-based stations
Monhart et al. (2018), Bueler et al. (2020), £ '
Dorrington et al. (2020) #D(I\)/Ir;]tarliz

Need for updates
 Wind speed:

Lynch et al. (2014), Lled6 & Doblas-Reyes ,
(2020), Buieler et al. (2020) 10m instead of 100m
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I Why more than direct NWP forecasts?

* |If there is a strong dependence between a surface field
of interest and another field that is forecast better
- Complement direct forecast with information transferred

from dependent field using supervised learning
Schepen et al. (2012, 2014, 2016), Orth & Seneviratne (2014), Alonzo et al.
(2017), Kamarainen et al. (2019), Strazzo et al. (2019), Ramon et al. (2021)
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Why more than direct NWP forecasts?

* |If there is a strong dependence between a surface field
of interest and another field that is forecast better
- Complement direct forecast with information transferred

from dependent field using supervised learning
Schepen et al. (2012, 2014, 2016), Orth & Seneviratne (2014), Alonzo et al.
(2017), Kamarainen et al. (2019), Strazzo et al. (2019), Ramon et al. (2021)

* If the dependence is nonlinear
— Add nonlinearities in statistical model using

Convolutional Neural Networks (CNN)
Hohlein et al. (2020)

 If there is a weak dependence between ensemble
forecasts model errors from different NWP models
- Aggregate ensembles from multiple models using

ensemble barycenters
Ning et al. (2014), Robin et al. (2017, 2019), Papayiannis et al. (2018), Vissio
& Lucarini (2018), Vissio et al. (2020)
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I Research questions

|. Are the dynamical European sub-seasonal predictions of wind
speed and temperature more skillful than climatology?

NWP T2m + W100m N. Goutham et al., 2022
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Research questions

|. Are the dynamical European sub-seasonal predictions of wind
speed and temperature more skillful than climatology?

NWP T2m + W100m N. Goutham et al., 2022

ll. Can these predictions be improved by using machine learning to
combine direct forecasts with information from other fields?

NWP + ML T2m + W100m N. Goutham et al., 2023

lll. Is the relationship between these fields linear at these horizons?
NWP + ML-Deep W100m G. Tian, on-going

V. How to efficiently combine ensemble sub-seasonal forecasts from
different NWP models?

NWP (+ ML) + MME T2m C. Le Coz, on-going
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Common methodology: data types

« Reforecasts (hindcast) from S2S project (ECMWF/NCEP) to:
« Compute climatology
« Compute trend
« Calibrate
e Train (Goutham: 1999-2016, Tian:1994-2014)

* Forecasts from S2S project (ECMWF/NCEP) as inputs to:
e Train (Le Coz: 2015-2022)
» Test (Goutham: 2016-2020, Tian: 2016-2021, Le Coz: 2015-2022)

1

Hindcast set | Operational
(20 years) : forecast
I
1999 2000 2018 | 2019
_ _ _ _
_— s e | .
(] 3] o ee [ | @

L] L] L] L
E—— —_ —_— | ——
x11 x11 x11 | x51

1




Common methodology: data types

Reforecasts (hindcast) from S2S project (ECMWF/NCEP) to:

« Compute climatology

« Compute trend

« Calibrate

* Train (Goutham: 1999-2016, Tian:1994-2014)

Forecasts from S2S project (ECMWF/NCEP) as inputs to:
e Train (Le Coz: 2015-2022)

» Test (Goutham: 2016-2020, Tian: 2016-2021, Le Coz: 2015-2022)
Reanalysis (ERA5/MERRA-2) as target (reference) to

* Train

» TJest

Continuous Rank Probability Score (CRPS) as

* Loss function
» Skill score

16



Common methodology: calibration and preprocessing

0 Calibrated . Processed
—>
Calibration ] (re)forecast [Preprocessmg] [ (re)forecast J

T2m/W100m
reanalysis

T2m/W100m
(re)forecast

* - O ref -
* Calibration (statistics): Xg = (X — Xen) | ek
* Mean-variance adjustment Where,
(Leung et al. 1999) X, = raw member
X = mean of reforecasts
° Preprocessi ng: 0 . = std. deviation of reforecasts
Eref = mean of observed climatology
 Remove trend o, = std. deviation of observed climatology

* Remove seasonal cycle

17



Based on Continuous
Rank Probability
Score (CRPS)

Common methodology: skill scores (accuracy)

crps = [ " [Ply) — Fo(y)|2dy

o0

Where,
F(y) = empirical CDF of forecasts
F_(y) = CDF of observation

_J0, ify<o
FO(Y)—{I, ify>o

0 = observation

Probability

Probability

Credits: ECMWF
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Based on Continuous
Rank Probability
Score (CRPS)

* Average CRPS Skill
Score (CRPSS):

< CRPS forecast >

CRPSS=1-
( CRPS

climatology >

Common methodology: skill scores (accuracy)

crps = [ " [Ply) — Fo(y)|2dy

o0

Where,
F(y) = empirical CDF of forecasts
F_(y) = CDF of observation

_J0, ify<o
FO(Y)_{I, ify>o

0 = observation

Probability

Probability

Credits: ECMWF
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Common methodology: skill scores (accuracy)

- +00 1
Based on Continuous CRPS :f F(y) — Fo(y)]%dy z
Rank Probability 0 .
Score (CRPS) Where, o

F(y) = empirical CDF of forecasts
F_(y) = CDF of observation >
* Average CRPS Skill ey [0, iy <o 3
Score (CRPSS): o) =11 ify>o <
CRPS - -
CRPSS=1- < forecaSt> 0 = observation Credits: ECMWF
<CRPSclimatology>

* Proportion of Skillful
Forecasts (CRPSp):

# { CRPS forecast >CRPS climatology }
#[CRPS

CRPSp = %100

climatology }
20



l. Are the dynamical European sub-

seasonal predictions of wind speed

and temperature more sKkillful than
baseline climatology?

Goutham et al., 2022. How Skillful Are the European Subseasonal Predictions
of Wind Speed and Surface Temperature? Mon Wea Rev 150, 1621-1637.
https://doi.org/10.1175/MWR-D-21-0207.1

21
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l. Methodology: computing scores w.r.t. reanalysis

Preprocessed
reanalysis

Processed
(re)forecast

Skill score Skill score
function result

22
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T2m

1.00

0.79 14
.50 =+

0.25
0.00 -

—1L25

10 20 30 \40
Lead time in days
(central day of the week)

CRPSS

. Results: Europe average CRPSS

W100m

1.00
i A
0.50 -
023 -

0.00 -

—-0.25

M ve
1

10 \2:% 30
Lead the in days

(central day of the week)

* T2m: significant skills up to 6 weeks (p < 5%) on average
« W100m: significant skills up to 3 weeks on average
 T2m skills generally better than W100m
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. Results: map of CRPSp for temperature
7-13 14-20 21-27

Winter

Summer

0-6

45 50
Proportion of skillful re-forecasts (%)

« Skill at the scale of grid-point (0.9°x0.9°) [more blue/green]
 Better skill over eastern Europe [more blue/green east]
* Better skill in Winter than in Summer [more blue in top] 4



l. Conclusions

=>|FS forecast skill can go up to 6 weeks encouraging applications
=> Skill of 2m-temperature > 100m-wind speed
=> Seasonal variations in relative skills:

22m-temperature: winter > summer > spring/autumn
2100m-wind speed: winter > summer/autumn > spring

=> Spatial pattern in skills:
>)m-temperature: eastern Europe > western Europe
2100m-wind speed: northern Europe > southern Europe

2> Forecasts > reforecasts because of larger ensemble
=>Skills beyond 2 weeks for lower and upper terciles
=>Limitation: forecast-reanalysis probabilistic dependence

25



Il. Can these predictions be improved

by using machine learning to combine

direct forecasts with information from
other fields?

Goutham et al., 2023. Statistical Downscaling to Improve the Subseasonal
Predictions of Energy-Relevant Surface Variables. Mon Wea Rev 151, 275-296.
https://doi.org/10.1175/MWR-D-22-0170.1

26
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5300 5400 5500 56005700 5800 5900 6000
m

Geopotential height at 500 hPa
(Z500)

1. Methodology: downscaling forecast information

2 3 4 5 6 7 8 0 4 8 12 16 20 24 28 32 36
ms~1 °C
100-m wind speed 2-m temperature
(U100) (T2m)
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1. Methodology: downscaling forecast information

. Training' Iearn relationship between z500 and W100m

Processed

reanalysis
z500
Mgo_lel ]——‘[ Model state ]
training
Processed
reanalysis
T2m/W100m

* Statistical prediction: apply model to z500 and combine

Processed

(re)forecast)

z500 Statistical

\[ Apply model ] prediction ]\

T2m/W100m

_ Hybrid

Combine prediction

Processed
(re)forecast
T2m/W100m

T2m/W100m




Il. Methodology: redundancy analysis

* Multi-output least squares on a linearly truncated basis
* Truncate to maximize average coefficient of determination

e Like canonical component analysis but different

normalization
Predictor Z500

Predictand U100 and T2m
Training period ERAS reanalysis, DJF 1999-2016 (17 years)

Testing period  Operational forecasts, DJF 2016-2020 (4 years)

Testing kind Leave-one-out cross validation
Truncation Maximizing the median of Fair-CRPSS (Ferro 2014)
criteria over the domain.

Here, fair = infinite ensemble size

E.g. von Storch & Zwiers (1999)
29



Il. Methodology: comparing PCA and RDA patterns

Pattern - 1 Pattern - 2 Pattern - 3

PCA
(conventional)
patterns

Redundancy
patterns
conditioned
on U100

Redundancy
patterns
conditioned
on T2m

~(.85 -0.68 -0.51 -0.34 -0.17 0.00 0.17 0.34 051 0.68 0.85

30



Il. Methodology: comparing skills of
PCA / RDA regression

PCR RDA

e T2mM

PCR RDA

e W100m

— RDA more skillfull than PCA

coocoocoocoo o+
H N W R LU O < QOO
Coefficient of determination

o
o
Coefficient of determination
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Il. Results: map of CRPSp for W100m

DY

HY

\%

50 55 60 65 70 75 80 85 90 95100

Fair-Proportion of skillful forecasts (%)

Fig: Comparison of proportion of skillful forecasts between dynamical and hybrid predictions of U100.

Forecasts in DJF 2016-2020.

— Hybrid > Dynamical > Statistical [more blue in HY than DY],
especially at long lead time.



I Il. Conclusions for both W100m and T2m

=>RDA patterns show a significantly higher explanatory power than
the PCA counterparts

=2 Hybrid predictions are significantly more skillful than either
dynamical or statistical predictions alone.

2>The added value of hybrid predictions increases with lead time.

33



lll. Is the relationship between these
fields linear at these horizons?

34



IV. How to efficiently combine
ensemble sub-seasonal forecasts from
different NWP models?

35



1IV. Motivation of Multi-Model Ensembles (MME)

MME methods have been shown to improve forecast skill

e Complementary skill
e Better estimate the forecast uncertainty

- Larger ensemble
- Take into account model uncertainties

model A

v
v

v

+  Hagedorn, R., Doblas-Reyes, F.J. and Palmer, T.N., 2005. The rationale behind the success of multi-model ensembles in

seasonal forecasting - |. Basic concept. Tellus A: Dynamic Meteorology and Oceanography, 57(3), p.219-233.

+ Casanova, S., and B. Ahrens, 2009: On the Weighting of Multimodel Ensembles in Seasonal and Short-Range Weather

Forecasting. Mon. Wea. Rev., 137, 3811-3822,
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I IV. Opportunities from probabilist framework

 Ensemble forecast = discrete probability distribution

S F 3
™\
1\
N
N ',' \ [
i —
(Wi 1y
\/
| . .
I > >

a4 .

|
~J
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I IV. Methodology: barycenter of distributions

What is the barycenter of two distributions y, and u, ?

py=argminld(p, p,+d(py, 4,)]

where d is a distance.

38
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IV. Methodology: pooling barycenter

L2 distance:

—— Ensemble 1

—— Ensemble 2

0 10 20 30 40
Leadtime

d(py, py) =l p,— p,l|=(lim (/”1(X)_/*’2(X))2dx)

Variable

1/2

—— L, barycenter
151 2 bary %

Leadtime
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I IV. Methodology: Wasserstein barycenter

= Wasserstein distance: minimum average transport cost

d(H,,H,)=W, (Y, Y,)

Optimal transport (horizontally):

— Source U — T(x)

—— Target u;

— c(x,y) X
y

Source: R. Flamary lectures

40



IV. Methodology: Wasserstein barycenter

< Wasserstein barycenter: Wy, =argmin(W,(p,p,)+W;(p, p,))

\ \
D Ensemble 1 Z —— W, barycenter
—— Ensemble 2 15
O] O]
o o 10
0 ©
3 3
5
F T 0 F T
0 10 20 30 40 0 10 20 30 40

Leadtime Leadtime



IV. Methodology: weighted barycenter with machine-
learned weights

What is the barycentre of two distributions y. and p, ?

p,=argminla.d(p,p, f+(1—a).d(y, p,)’]

where
-dis a distance

- O<a <1 is a constant weight

Learn weight(s) from a training dataset

42



I IV. Methodology: combining ECMWF IFS and NCEP

* The S2S database of sub-seasonal ensemble forecast from 11 centers

50 15
Days 0-46 Days 0-44
2/weeks Daily

» Reference: MERRA-2 (reanalysis)

43



IV. Results: spatial average

0.100+ Forecast: 62 Forecask
_— - ccnur 2 p-ii
- ~®- NCEP 7 604
0.050 1 @
p
(@]
g 0.025 E
S 0.000 Fmmmmmmmmm o ¥
kS
—0.025 1 _S
—0.0501 8
o
o
—0.075 1
3 4 5 6 3 4 5 6
Lead time (week) Lead time (week)

 L,-barycenter best w.r.t. CRPSS
« W._-barycenter best w.r.t. proportion of skillful forecasts

=> Best model depends on the score, but improvement w.r.t. to single model



IV. Results: grid-point scale

=> Best model depends on the score

=> Best model also depends on the locations

Proportion of skillful
forecasts
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I IV. Conclusions

=> Multi-model ensemble generally improve on single-model forecast.
=> Best combination method depends on the score (and location).

=> The model’s weight @ is critical (large impact on the scores).
Next steps:
=> Application of the barycenters to several models

=> Temporal weights
=> Barycenters to combine inputs/outputs in downscaling approach

46



General perspectives for discussion

 Sub-seasonal predictability potential confirmed for presented
observables and domain

 Many factors entering predictions (preprocessing, downscaling, input
variables, training period...) depending on scores - can we do better
than trial-and-error?

« Compatibility issues between parameters of different model
simulations (different ensemble sizes in particular)

 Relevance of skill improvement depend on application (e.g.
application to wind droughts in N. Goutham PhD thesis)

 What is the extra economic/ecological cost of machine learning?

- Balance between dynamics and statistics in a sufficient
forecasting system ?

47



Thank youl!

Contact: alexis.tantet@Imd.ipsl.fr

48



Selected references

=> Alonzo et al., 2017. Modelling the variability of the wind energy resource on monthly and seasonal timescales.
Renew Energy 113, 1434—-1446. https://doi.org/10/gf3wi4

=> Goutham et al., 2022. How Skillful Are the European Subseasonal Predictions of Wind Speed and Surface
Temperature? Mon Wea Rev 150, 1621-1637. https://doi.org/10.1175/MWR-D-21-0207.1

=> Goutham et al., 2023. Statistical Downscaling to Improve the Subseasonal Predictions of Energy-Relevant
Surface Variables. Mon Wea Rev 151, 275-296. https://doi.org/10.1175/MWR-D-22-0170.1

=> Hohlein et al., 2020. A comparative study of convolutional neural network models for wind field downscaling.
Meteorol Appl 27, €1961. https://doi.org/10.1002/met.1961

=> Santambrogio, 2015. Optimal Transport for Applied Mathematicians. Birkhauser, Cham.

=> Vissio, G., Lembo, V., Lucarini, V., Ghil, M., 2020. Evaluating the Performance of Climate Models Based on
Wasserstein Distance. Geophys Res Lett 47, e2020GL089385. https://doi.org/10/ghn76n

=> Vitart, F., Robertson, A.W., 2018. The sub-seasonal to seasonal prediction project (S2S) and the prediction of
extreme events. NPJ Climate and Atmospheric Science. https://doi.org/10/gfsv2d

=> Chap. 14 in von Storch, H., Zwiers, FW., 1999. Statistical Analysis in Climate Research. Cambridge University
Press, Cambridge.

=> White et al., 2017. Potential applications of subseasonal-to-seasonal (S2S) predictions. Meteorol Appl 24, 315—
325. https://doi.org/10.1002/met.1654

49


https://doi.org/10/gf3wf4
https://doi.org/10.1175/MWR-D-21-0207.1
https://doi.org/10.1175/MWR-D-22-0170.1
https://doi.org/10.1002/met.1961
https://doi.org/10/ghn76n
https://doi.org/10/gfsv2d
https://doi.org/10.1002/met.1654

Appendix

50



Von Storch et al. 1999, Tippett et al. 2008, Wilks 2014,2019

1. Redundancy analysis: maximize the explained variance

Pia P12 ... Dig qii q12 ... {q14
: ; i q2.1 . ces g2y

P — p2,l pg‘t Q s :
Pm,1 . cor Pmt dn,1 ; cee Qng

X=Ep.P' and Y=EJ.Q

The joint sample variance-covariance matrix of the leading
predictor and predictand PCs is given by

S _ (SXX SXY)

Syx Syy
The eigen decomposition of the predictand covariance
matrix conditioned on the predictor

S¢¢ = Syx- Sxx- Sxv

vields predictand patterns B and eigen values A\

Redundancy analysis mathematical formulation

The predictor patterns can be obtained as

1
A= — ;{]l(-SXY-B

The predictor and predictand redundancy PCs

can be computed as

V=AT.X and W=BLlY
respectively.
2. Redundancy predictions:

Given a new predictor PC set X , one can

compute the predictand redundancy PCs as

W=RT.Vv,=RT.AT.X_
Where R = v/A

The predictand vector can be reconstructed as

dy = Eq.(BT)"L.W = Eq. (BT)"L.RT.AT.X,

mn
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I Barycentre with the Wasserstein distance

= Wasserstein barycentre:

. =argmin(W5(p, p,)+Ws (4, p,))

M1
M2
Hw,

T«

7

.
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« L,-barycentre has a better reliability.

« W_-barycentre has a better resolution.
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