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General introduction

Step 1
Input uncertainty
probability distribution
of X y
Step 0 (4)
Model specification
Y = M(X)
input parameters X, output Yy
Step 2
Uncertainty propagation
tendency, quantiles...
of Y

�

Step 3
Sensitivity analysis
- local variational approach
- global sensitivity analysis
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General introduction

Step 0: model specification

Evolution of climate models through last century

https://www.windows2universe.org/earth/climate/climate_modeling.html
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General introduction

https://www.ecmwf.int/en/about/media-centre/news/2017/twenty-five-years-ensemble-forecasting

Step 1 Step 2
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General introduction

Concerning Step 1, uncertainty may be classified into two categories
▶ aleatoric (aka statistical) uncertainty refers to the notion of

randomness, that is, the variability in the outcome of an
experiment,

▶ epistemic (aka systematic) uncertainty refers to uncertainty
caused by a lack of knowledge.

Examples:
▶ meteorological inputs are random,
▶ bathymetry.

Classification is not always easy.

4 / 45



General introduction

How to explore "at best" input parameter space for Step 2 of
uncertainty propagation?

Uniform design Latin Hypercube Sampling Factorial design

It is important, e.g., for parameter perturbation in view of ensemble
forecast.
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General introduction

Step 1 misspecified
input parameters

Step 0 complex models,
O(1010) degrees of freedom

Step 2 uncertain
predictions
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Introduction to Sensitivity Analysis

Step 3: sensitivity analysis (Razavi et al., 2021)

Aim of Sensitivity Analysis: find how model outputs vary with input
changes.
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Introduction to Sensitivity Analysis

Application to a biogeochemical model:
ecosystem model (MODECOGeL) of the Ligurian Sea
Joint work with IGE Lab (Grenoble, FRANCE)
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Introduction to Sensitivity Analysis

MODECOGeL is a one-dimensional coupled hydrodynamical-
biological model.

• hydrodynamic model: 1-D vertical simplification of primitive
equations for the ocean, 5 state variables;
• ecosystem model: marine biogeochemistry, 12 biological state
variables.
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Introduction to Sensitivity Analysis

Inputs/Outputs:
▷ 74 scalar input parameters;
▷ spatio-temporal outputs.

Main issue: calibration of the model.

Sensitivity Analysis is a preliminary step to this calibration task.
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Introduction to Sensitivity Analysis

GSA for convection-permitting Numerical Weather Prediction (NWP)
models Wimmer et al (2022)

Aim: to determine the most influential parameters on the forecast of
different near-surface variables.

Model:
convective-scale AROME model.

Input parameters:
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Introduction to Sensitivity Analysis

Scalar outputs: either an averaged forecast field or a performance
metric such as mean bias, root-mean square error and mean absolute
error.

Bias =
1
n

n∑
k=1

(yk − ok ) , RMSE =

√√√√1
n

n∑
k=1

(yk − ok )2 ,

MAE =
1
n

n∑
k=1

|yk − ok | .

These scores are computed using SYNOP (surface synoptic
observations) and the French real-time meteorological observation
network (Tardieu & Leroy, 2003).

Notation: n is the number of in-situ measures, yk is the model output
and ok is the k -th observation.
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Introduction to Sensitivity Analysis

On the figure below (Wimmer et al, 2022), outputs are spatial-averaged
scores computed for 10-meter wind speed ff10m, 10-meter wind gust ffgust,
1-hourly, 3-hourly, 6-hourly and 24-hourly accumulated precipitation prec01,
prec03, prec06, prec24, total cloud cover cloud, 2-meter relative humidity
RH2m, 2-meter temperature T2m and 1-hourly downward global solar
radiation Sol01. Total Sobol’ indices measure the sensitivity of each of these
outputs with respect to input parameters.

The higher the Total Sobol’ Indice
is, the darker the colour is, the
more influential the parameter is.
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Sensitivity Analysis tools Local Sensitivity Analysis

M :

{
Rd → R

x 7→ y = M(x1, . . . , xd)

Local Sensitivity Analysis is based on Taylor approximation:
M(x) ≈ M(x0) +

∑d
i=1

(
∂M
∂xi

)
x0
(xi − x0

i ).

First order sensitivity index for
input i:

(
∂M
∂xi

)
x0

.

Pros: Low computational cost even for large d if one uses the adjoint
stae method (see, e.g., Plessix, 2006).

Cons: Local analysis, not well-suited for highly nonlinear models.
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Sensitivity Analysis tools Global Sensitivity Analysis

Global Sensitivity Analysis with Screening

Main objective: to screen among a large amount of inputs which ones
are non influential on the quantity of interest (QoI).

Advantages: moderate computational cost.

Drawbacks: partial information, no hierarchisation.

A OAT screening method : Morris, 1991

OAT One At a Time we vary the factors one by one.
The screening method proposed by Morris is a global OAT approach.

Model Y = M(X), X = (X1, . . . ,Xd) with the Xis independent uniform
random variables on [0,1].
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Sensitivity Analysis tools Global Sensitivity Analysis

More details on the method :

- input discretization on a grid with p values
{

0, 1
p−1 , . . . ,1

}
.

- ∆ a multiple of 1/(p − 1), fixed once for all.

- Ω :=
{

0, 1
p−1 , . . . ,1

}d
.

- Ω∆
i := {x ∈ Ω such that (x1, . . . , xi−1, xi +∆, xi+1, . . . , xd) ∈ Ω}.

Definition
Elementary effect of Xi computed at x ∈ Ω∆

i ,

di(x) =
1
∆

{M(x1, . . . , xi−1, xi +∆, xi+1, . . . , xd)−M(x)} .

There are pd−1(p −∆(p − 1)) elementary effects to compute.
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Sensitivity Analysis tools Global Sensitivity Analysis

Steps :
▶ one draws uniformly a r -sample in Ω∆

i : x1, . . . ,xr ;
▶ one computes di(xj), j = 1, . . . , r , i = 1, . . . ,d ;
▶ one computes

µi =
1
r

r∑
j=1

di(xj) , σ2
i =

1
r

r∑
j=1

(di(xj)− µi)
2.

σ2
i low σ2

i high

|µi | low non influential nonlinearities and/or interactions

|µi | high influential nonlinearities and/or interactions
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Sensitivity Analysis tools Global Sensitivity Analysis

Elementary effect of Xi computed at x ∈ Ω∆
i ,

di(x) =
1
∆

{M(x1, . . . , xi−1, xi +∆, xi+1, . . . , xd)−M(x)} .

The efficiency of the method "number of elementary effects computed /
number of model runs" is equal to 1/2.

Morris (1991) presents an adaptation with an efficiency equal to
d/(d + 1), with d the input space dimension.

r = 3 Morris trajectories with p = 5,
∆ = 3/4.
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Sensitivity Analysis tools Global Sensitivity Analysis

A toy example Advection-reaction-diffusion equation with Dirichlet
boundary condition :

∂u
∂t

= −r .u − a
∂u
∂x

+ λ
∂2u
∂x2 + f x ∈ [0,L], t ∈ [0,T ]

u(x = 0, t) = Ψ1(t) t ∈ [0,T ]

u(x = L, t) = Ψ2(t) t ∈ [0,T ]

u(x , t = 0) = g(x) x ∈ (0,L) .

A : energy norm of the solution at time t = T .

Sensitivity of A with respect to (a, r , λ)? Uncertain input parameters
are modeled as a, r ∼ U ([0.4,0.6]), λ ∼ U ([0.04,0.06]).

Scheme : 2-stemps Adams-Moulton, sample size equals 213.

Sensitivity measures based on variance : Sa = 0.0188, Sλ = 0.7299,
Sr = 0.2488, Sa + Sλ + Sr = 0.988.
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Sensitivity Analysis tools Global Sensitivity Analysis

Figure: Morris with p = 50, ∆ = 25/49.
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Sensitivity Analysis tools Global Sensitivity Analysis

Variance-based Global Sensitivity Analysis

Independent framework: P(dx) = P1(dx1) . . .Pd(dxd)

Let

M :

{
Rd → R

x = (x1, . . . , xd) 7→ y = M(x)

Does the output Y vary more or less when fixing one of its input
parameters? V [Y |Xi = xi ], how to choose xi?

−→ E [V (Y |Xi)] = V [Y ]− V [E (Y |Xi)].

First-order Sobol’ indices: 0 ≤ Si =
V [E (Y |Xi)]

V [Y ]
≤ 1.

The more this quantity is close to 1, the more fixing Xi reduces the
variance of Y : the input Xi is influential.
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Sensitivity Analysis tools Global Sensitivity Analysis

More generally,

Si =
V [E [Y |Xi ]]

V [Y ]
, 1 ≤ i ≤ d

Si,j =
V
[
E
[
Y |Xi ,Xj

]]
− V [E [Y |Xi ]]− V

[
E
[
Y |Xj

]]
V [Y ]

, 1 ≤ i ̸= j ≤ d . . .

We have 1 =
d∑

i=1

Si +
∑
i ̸=j

Si,j + . . .+ S1,...,d

Factors Prioritization (FP): which factor should one try to determine
first to get the largest expected reduction in the variance of the model
output? −→ first order Sobol’ indices do the job.
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Sensitivity Analysis tools Global Sensitivity Analysis

Total Sobol’ indices:

i = 1, . . . ,d Stot
i =

∑
u⊆{1,...,d} , u∩{i}≠∅ Su

Factors Fixing (FF): which input factors can be fixed, anywhere in their
range of variation, without sensibly affecting a specific output of
interest? −→ total Sobol’ indices do the job.

We have:

Stot
i =

E [V [Y |X−i ]]

V [Y ]
= 1 − V [E [Y |X−i ]]

V [Y ]

with X−i = (X1, . . . ,Xi−1,Xi+1, . . . ,Xd).
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Sensitivity Analysis tools Global Sensitivity Analysis

Sobol’ index estimation
▶ Sobol’ indices can be estimated from input/ouput samples(

X(i),Y (i) = M(X(i))
)
, 1 ≤ i ≤ n.

▶ Metamodels can be built to
speed up computations.

Some additional issues
▶ visualization for complex outputs,
▶ correlated inputs,
▶ stochastic models. . .
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Application to MODECOGeL
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Application to MODECOGeL

Application to MODECOGeL

see Prieur et al, 2019
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Application to MODECOGeL

MODECOGeL is a one-dimensional coupled hydrodynamical-
biological model.

• hydrodynamic model: 1-D vertical simplification of primitive
equations for the ocean, 5 state variables;
• ecosystem model: marine biogeochemistry, 12 biological state
variables.
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Application to MODECOGeL

▷ 74 independent
scalar parameters
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Application to MODECOGeL

State variables

The ecosystem model provides a 12-component description of the ecosystem
of the Ligurian Sea.

Variable Acronym Name

C1 NO3 Nitrate
C2 NH4 Ammonium
C3 PicP Picophytoplankton
C4 NanP Nanophytoplankton
C5 MicP Microphytoplankton
C6 NanZ Nanozooplankton
C7 MicZ Microzooplankton
C8 MesZ Mesozooplankton
C9 BAC Bacteria
C10 DON Dissolved organic nitrogen
C11 POM1 Particulate organic matter (size 1)
C12 POM2 Particulate organic matter (size 2)

The time evolution of each state variable is governed by the equation:
∂Ci

∂t
= ADVi + DIFFi + SMSi with SMSi =

∑
j ̸=i

FLUX(Cj → Ci )

where ADVi and DIFFi are advection and diffusion terms, and SMSi is the
“source minus sink” term summing up the fluxes (FLUX(Cj → Ci)) between
the various components of the ecosystem. We also introduce chlorophyll
concentration C0 = α(C3 + C4 + C5).
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Application to MODECOGeL

QoIs
Index j Name Definition

1 surface maximum maxt Ci(0, t)

2 time of surface maximum argmaxtCi(0, t)

3 maximum of vertical average max
t

1
Z

∫ Z

0
Ci(z, t) dz

4 time of maximum of vertical average argmaxt
1
Z

∫ Z

0
Ci(z, t) dz

5 time and vertical average
1

ZT

∫ T

0

∫ Z

0
Ci(z, t) dz dt

Quantities of interest Yij . The maximum depth for averaging is
Z = 40 m, and T is the total duration of the experiment.
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Application to MODECOGeL

Processing chain

R : sensitivity

sobolroahlhs

PlanPar
Experimental 

Design

Split
+

Storage 
IRODS

.

.

.

.

.

.

modecogel

planPar_1

planPar_n

QoI_1

QoI_n

QoI_Glob

Workstation/laptop Local Grid Computing /Distributed Storage

object 
sobolroalhs

R : sensitivity
Compute indices

sobolroahlhs

modecogel

planPar_2

modecogel

.

.

.

QoI_2
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Application to MODECOGeL

How the results look like?
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Estimated first-order indices (y -axis) with their 95% confidence interval for the 74 model

parameters (x-axis), for n = 103, 104, 105 and 106, in the case of the output Y01. The dashed

horizontal line corresponds to a threshold arbitrarily chosen to be 0.01. Confidence intervals

were obtained with a bootstrap procedure and a bootstrap sample size of 100.
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Application to MODECOGeL
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Map (74 × 74) of the second-order unclosed Sobol indices for QoI Y01. The x and y axes

correspond to the number of the parameters, and the grey scale to the value of the index. Note

that the numbers indicated on the axes correspond to parameters with high first-order indices.
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Application to MODECOGeL

Top eight ranking of the local derivative ∂Y/∂Xj , and first-order and total
Sobol’ indices Sj and Stot

j .

j 2 14 15 18 30 35 36 46 57 63 66 67
∂Y/∂Xj 8th 3rd 4th 7th 6th 5th 2nd 1st

S{j} 7th 2nd 8th 5th 4th 6th 3rd 1st

Stot
{j} 3rd 1st 2nd 7th 4th 8th 5th 6th

We can normalize local derivatives

Sloc
j =

V [Xj ]

V [Y ]

(
∂Y
∂Xj

)2

·

33 / 45



Application to MODECOGeL
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(left), non dimensional derivative Sloc
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(right, upper

panel), and first-order and total Sobol’ indices (right, lower panel) as functions of the number of

the parameter (x-axis). The derivatives are computed for (x1, . . . , xd ) = (E(X1), . . . ,E(Xd )).
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What if inputs are dependent?

Why is the independent framework not always the right one?

Let us come back to the example of agro-climatic model for the water
status management of vineyard.

The soil texture was initially described by 3 scalar parameters: the
percentages of argil, sand and silt.

These parameters are not independent as

% argil +% sand +% silt = 100% .

In the study, this set of parameters has been replaced by a unique
parameter aSoil describing the influence of the soil texture on its
evaporation capacity.

Daily precipitations, solar radiation, mean air temperature and potential
evapotranspiration are temporal correlated inputs.

We chose to use kind of scenario approach: it consists in grouping the
4 temporal inputs into a single input factor, defining a weather scenario.
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What if inputs are dependent?

Sometimes, dependencies are due to a more complex simulation
setting and cannot be handled by grouping inputs or with a scenario
approach.

A snow avalanche model, joint work with INRAE (Grenoble, FRANCE)

Model based on depth-averaged Saint-Venant equations (see Heredia
et al., 2022 for more details)

∂h
∂t

+
∂hv
∂x

= 0

∂hv
∂t

+
∂

∂x

(
hv2 +

h2

2

)
= h (g sin θ − F)

with v = ∥v⃗∥ the flow velocity, h the flow depth, θ the local angle, t the time, g the gravity

constant and F = ∥F⃗∥ a frictional force. The model uses the Voellmy frictional force

F = µgcosθ + g/(ξh)v2, where µ and ξ are friction parameters.

Equations are solved with a finite volume scheme Naaim et al. (98) .
The topography is the one of a path located in Bessans, France.
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What if inputs are dependent?

Let us present one of the two scenarii presented in Heredia et al. (2022).
Input Description Distribution
µ Static friction coefficient U [0.05, 0.65]
ξ Turbulent friction [m/s2] U [400, 10000]
lstart Length of the release zone [m] U [5, 300]
hstart Mean snow depth in the release zone [m] U [0.05, 3]
xstart Release abscissa [m] U [0, 1600]

Let’s volstart = lstart × hstart × 72.3/ cos(35◦) instead of hstart and lstart.

AR rules:

▶ avalanche simulation is
flowing in [1600m,2412m],

▶ vol > 7000m3,

▶ runout distance < 2500m (end
of the path).

From n0 = 100 000 initial runs, we
keep n1 = 6152 constrained ones.
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What if inputs are dependent?

An alternative, the Shapley effects

We define

ϕi =
1
d

∑
u⊆−{i}

(
d − 1
|u|

)−1(
val(u + i)− val(u)

)
with the characteristic function u 7→ V [E [Y |Xu]]/V [Y ]. The ϕis have
been introduced as the Shapley effects in [Owe14].

Interpretation

If we consider the inputs X1,X2, . . . ,Xd as the team members trying to
explain the variance of the output Y , then the set of Shapley effects
{ϕ1, . . . , ϕd} is the unique way to allocate V [Y ] to all players
characterized by desirable properties known as Shapley axioms (see
[Sha53] for more details).
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What if inputs are dependent?

How does it look like for the avalanche application?

1600 1800 2000 2200 2400

0
20

40
60

abscissa position [m]

ve
lo

ci
ty

 [m
/s

]

a)

1600 1800 2000 2200 2400

0
5

10
15

abscissa positionh [m]

flo
w

 d
ep

th
 [m

]

b)

24
20

24
40

24
60

24
80

ru
no

ut
 d

is
ta

nc
e 

[m
]

c)

Aggregated Shapley effects of velocity and flow depth curves calculated over space intervals

[x , 2412m] where x ∈ {1600m, 1700m, . . . , 2412m}
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We have n = 6152, Ntot = 2002, B = 500. Effects are estimated using the first (2, resp. 4) fPCs

(see Yao et al., 2005, Ramsay et al., 2005) explaining more than 95% of the variance. Local

slope is drawn with a gray line. A gray dotted rectangle is drawn at [2017m, 2412m] where

avalanche return periods vary from 10 to 10 000 years.
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Conclusion, perpectives
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Conclusion, perpectives

Conclusion, perpectives

UQ is an essential phase of forecasting.

SA helps:

▶ in understanding model behavior,

▶ as a preliminary step to model calibration,

▶ as a tool for decision support.

It may help in many other tasks:

▶ it is possible to use GSA for the construction of ensembles based on
parameter perturbation (see Meryl Wimmer’s PhD, 2021);

▶ it is possible to combine a GSA and a recursive Bayesian filtering
approach for data-driven data assimilation (see, e.g., Hirvoas et al,
2022).

Important issue: how to perform UQ with as few as possible model runs?
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Conclusion, perpectives

Even so, SA from initial model can be prohibitive. Thus the importance of
metamodelling: Gaussian Process Regression (kriging), Polynomial Chaos,
Physics-Informed Neural Networks. . .

Today I only presented the basics of SA. A deeper review with practical
implementation in R can be found in

with codes freely available at
https://bookstore.siam.org/cs23/bonus

Thanks for your attention!

Questions?
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