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Numerical weather prediction

Numerical weather prediction (NWP)

▶NWP has been framed as a mathematical problem
with an initial condition in 1904 by Vilhelm Bjerknes,
and envisioned as a numerical computational problem
by Lewis Fry Richardson in 1922.

▶This program has been implemented starting in the
1950’s by e.g., Jule Gregory Charney.

▶Current medium-range weather forecasts typically
predict temperature, pressure, humidity, precipitation
and hydrometeors over a range of 15 days.

▶Critical for most human activities: agriculture, energy
production and distribution, transportation, extreme
and dangerous natural hazards.

▶ Important NWP centres in Europe: The UK
MetOffice, Deutscher Wetterdienst (DWD),
Météo-France, etc and the most skilled worldwide:
The European Centre for Medium-Range Weather
Forecasts (ECMWF).
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Numerical weather prediction

The fundamental obstacles: chaos and model error

▶Geofluids (atmosphere, ocean, ice, etc.) are almost
always dynamically chaotic: as dynamical systems, they
are extremely sensitive to their initial condition. This
has been discovered by Edward Lorenz [Lorenz 1963].

dx

dt
= σ(y − x)

dy

dt
= ρx − y − xz

dz

dt
= xy − βz,

with σ, ρ, β = 10, 28, 8/3.

▶There are stochastic and systematic model errors in
the physical processes, but also in the numerical
representation, and in the forcings.

▶Hence, the trajectory of the atmosphere state
constantly need to be adjusted to compensate for its
sensitivity to the initial condition and its drift via model
error.
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Numerical weather prediction

The solutions: observations and computations

▶Getting more and more computational power to run
high-resolution models and carry out deterministic and
ensemble forecasts.

▶Getting more and more observations as often as
often as possible (radiosondes, synoptic stations,
planes/boats/buoys, satellite, radar, lidar, etc.)

▶But these data are heterogeneous and need to be optimally combined to yield the most accurate possible
prediction over the state of the geophysical system.

−→ we need data assimilation!
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Data assimilation
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Data assimilation The science of combining information

Data assimilation (DA) in the geosciences

Data assimilation
best combines

observations and models

Expanded from numerical weather prediction to the climate science/geosciences:

Oceanography
Atmospheric chemistry
Climate prediction and assessment
Glaciology, sea-ice.

Hydrology and hydraulics
Geology
Space weather
and many other fields
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Data assimilation The science of combining information

Data assimilation: an inference problem

▶ Inference is the process of taking a decision based on limited information.

▶ Information comes from
▶ an approximate knowledge about the laws (if any) governing the time evolution of the dynamical system,
▶ imperfect (partial, noisy, indirect) observations of this system, as illustrated before.

▶ Sequential inference is the problem of updating our knowledge about the system each time a new batch of
observations becomes available.
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Data assimilation The science of combining information

First ingredient: the dynamical model

▶The physics and dynamics are described as PDEs and constitutive laws and as discretised into a discrete
stochastic dynamical system,

xk = M(xk−1, p) + ηk.

▶xk ∈ RNx and p ∈ RNp are the model state and parameter vectors respectively.

▶M : RNx → RNx is usually a nonlinear, possibly chaotic, map.

▶ηk ∈ RNx is the model error, represented as a stochastic additive term (more general representations are
possible). Misspecified p is also a source of model error.
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Data assimilation The science of combining information

First ingredient: the dynamical model

▶ In the geosciences:
The state space dimension is huge (up to 109 for operational systems, up to 107 for research systems). A
big data problem with costly models to integrate.
Numerical models (i.e. implementation of M) are often computationally very costly.
The unstable dynamics of chaotic geofluids has implicit consequences on the design of DA algorithms:
One key reason why we use sequential inference.

ECMWF IFS: Geopotential at 500hPa E3SM Earth system model
and temperature at 850hPa

▶The model of the ECMWF is known as the Integrated Forecasting System (IFS).
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Data assimilation The science of combining information

Second ingredient: the observations

▶Noisy observations, yk ∈ RNy , are available at discrete times and are related to the model state vector
through

yk = H(xk) + ϵk,

with H : RNx → RNy being the (generally nonlinear) observation operator mapping from the model to the
observational space.

▶The observation error, ϵk, is represented as a stochastic term. It accounts for the instrumental error, for
deficiencies in the formulation of H, and for the representation error.

▶The representation error arises from the presence of unresolved scales and represents their effect on the
resolved scales – it is ubiquitous in physical science and inherent to the discretisation procedure [Janjić et al. 2018].

▶Very often Ny ≪ Nx, i.e. the amount of available data is insufficient to fully describe the system.
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Data assimilation The science of combining information

Second ingredient: the observations

▶ In the geosciences: The observation space dimension is huge (up to 107 for operational systems, up to 106

for research systems). A big data problem.

▶The Earth observations gather measure-
ments of many sources: conventional,
space-borne, ground-based remote sens-
ing.

Conventional observations coverage used at ECMWF AMSUA observations used at ECMWF
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Data assimilation . . . within a Bayesian framework

. . . and one to bind them all: hidden Markov model

▶Considering the states and observations as random variables, the dynamical model, together with the
observation model, define a hidden Markov model:

Markov model

x1 x2 x3 xk
M2:1 M3:2

y1 y2 y3 yk

H1 H2 H3 Hk

▶This is an inverse problem: Estimate the state x given the observation y.

▶Data assimilation for forecasting chaotic geofluids: sequential schemes

Observation

Model (forecast)

H
Analysis

Observation

Model (forecast)

H
Analysis

Observation

Model (forecast)

H
Analysis
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Data assimilation . . . within a Bayesian framework

Main goals of data assimilation

t0 t1 t2 tK tK+1 tK+2

Past Future

▶Recall xK:0 = {x0, x1, . . . , xK}, yK:0 = {y0, y1, . . . , yK}:
Prediction: Estimate xk for k > K, knowing yK:0,
Filtering: Estimate xK , knowing yK:0,
Smoothing: Estimate xK:0, knowing yK:0.

▶ Less formal names:
hindcasting, nowcasting and forecasting,
reanalysis,
parameter estimation.
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Data assimilation . . . within a Bayesian framework

The adjoint problem

▶Typical cost function met in data assimilation (least squares problem):

J (x) =
1
2

∥y − H(x)∥2
R−1 +

1
2

∥∥x − xb
∥∥2

B−1 .

▶ If x is a high-dimensional vector and H a large and complex nonlinear geophysical model, we should compute
the gradient of J with respect to x to minimise it efficiently:

∇xJ (x) = − [H]⊤ R−1 (y − H(x)) + B−1
(

x − xb
)

,

with H = H′.

▶We need to be able to compute [H]⊤, i.e. tangent linear and adjoint.

▶But H may be a Fortran/C/C++ code consisting of millions of lines!

▶This is a fundamental and difficult computer science problem known
as automatic differentiation.
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Data assimilation A science with results

Weather forecasting with data assimilation

▶Constant progress due to more observations, better and finer models, and the improvements of data
assimilation techniques, the silent revolution [Magnusson et al. 2013; Bauer et al. 2015].
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Data assimilation A science with results

An incredibly useful product of NWP: Reanalysis

▶Using data assimilation methods with past observations and state-of-the-art models allows to reconstruct the
weather decades in the past.
−→ Critically useful for all the geosciences and climate research community, the insurance companies, energy
production companies (nuclear, wind, solar), transport/carriers, etc.

▶ERA-5 from the ECWMF is currently the most accurate reanalysis for the synoptical scale (1979-2018)
[Hersbach et al. 2020].
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Learning data-driven models of dynamics with AI

Outline

1 Numerical weather prediction

2 Data assimilation
The science of combining information
. . . within a Bayesian framework
A science with results

3 Learning data-driven models of dynamics with AI
Surrogate modelling
Attack of the GAFAs

4 Data assimilation and machine learning
Unification
Neural network subgrid parametrisation
AI-based correction of the IFS

5 Conclusions

6 References

M. Bocquet Colloque prévisibilité et points de bascule en géosciences, 3 octobre 2023, IHP, Paris, France 18 / 42



Learning data-driven models of dynamics with AI Surrogate modelling

Learning data-driven models from dense and perfect observations

▶A typical (supervised) machine learning problem: given observations yk of a system, derive a surrogate
model of that system from the loss function:

J (p) =
K∑

k=1

∥yk − M (p, yk−1)∥2

▶The surrogate model to be learned M depends on a set of coefficients p (e.g., the weights and biases of a
neural network (NN)).

▶This requires dense andperfect observations of the physical system.

▶ In the geosciences, observations are usually sparse and noisy: we need data assimilation!
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Learning data-driven models of dynamics with AI Surrogate modelling

Example of learning the dynamics of toy models – 1

▶ Inferring the dynamics from dense & noiseless observations of an almost-identifiable model
The Lorenz 96 model (40 variables)

dxn

dt
= (xn+1 − xn−2)xn−1 − xn + F,

Surrogate model based on an RK2 scheme.
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Learning data-driven models of dynamics with AI Surrogate modelling

Example of learning the dynamics of toy models – 2

▶Very good reconstruction of the long-term properties of the model (L96 model).

▶ Approximate scheme
▶ Fully observed
▶ Significantly noisy observations R = I
▶ Long window K = 5000, ∆t = 0.05
▶ EnKS with L = 4
▶ 30 EM iterations
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Learning data-driven models of dynamics with AI Surrogate modelling

Example of learning the dynamics of toy models – 3

▶ Inferring the dynamics from dense & noiseless observations of a non-identifiable model
The Kuramoto-Sivashinski (KS) model (continuous, discr. into 128 var.).

∂u
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Learning data-driven models of dynamics with AI Surrogate modelling

Example of learning the dynamics of toy models – 4

▶ Inferring the dynamics from dense & noiseless observations of a non-identifiable model
The Kuramoto-Sivashinski (KS) model (continuous, discr. into 128 var.).
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Learning data-driven models of dynamics with AI Surrogate modelling

Why does AI surrogate models matter?

▶AI/ML models run on CPU, GPU and TPU and can hence be very fast.

▶Thanks to deep learning, new sparse representations of data that yield better, systematic and numerically
affordable optimisations.

▶AI models coded with comprehensive and convenient deep learning libraries (Tensorflow/Keras,
PyTorch/Lightening, Julia/Flux, etc.) powered by Google, Facebook, Apache, Nvidia, etc.

▶Building codes on these libraries or languages automatically provides the tangent linear and adjoint of the
code, practically solving one of the old issue if traditional data assimilation.

▶AI/ML models should also be able to generate and build large ensemble of forecasts, hence with better
uncertainly estimation and potential detection of extreme events.
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Learning data-driven models of dynamics with AI Attack of the GAFAs

GAFA’s data driven (synpotic scale) meteorological models

▶ Nvidia’s FourcastNet [Pathak et al. 2022; Kurth et al. 2022]

▶ Google/Deepmind’s Graphcast [Lam et al. 2022]

▶ Huawei’s Pengu-Weather [Bi et al. 2023]

▶ ClimaX’ Microsoft [Nguyen et al. 2023]

▶ FengWu [Chen et al. 2023]

▶Forecasts (geopotential at 500hPa, temperature at 850 hPa) from July 22, 00UTC to July 24, 15UTC

▶Forecasts (geopotential at 500hPa, temperature at 850 hPa) from July 22, 00UTC to July 29, 12UTC

▶ Most of them achieve performances similar to that of the ECMWF’s IFS!
▶ Some of them become more accurate than the IFS in some regimes!?
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Learning data-driven models of dynamics with AI Attack of the GAFAs

Can we do the same? Data-driven meteorological model from ERA-5 reanalysis

▶True model: A selection
of ERA-5 fields in 1979-
2018 at 5.625◦.a

▶DL model: Residual NN
at the same resolution.

▶Forecast skill score
of the geopotential at
500hPa as a function of
the forecast lead time.b

▶η has also successfully
been tested with DA.

a [Rasp et al. 2020]
b [Bocquet et al. 2023]
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Learning data-driven models of dynamics with AI Attack of the GAFAs

What are the limitations of these AI weather models?

▶What about their deep neural architectures?

Model Variables Levels Resolution Architecture Learned from
FourCastNet 20 5 variable Vision transformers ERA-5

PanguWeather 4 13(+4) variable Vision transformers ERA-5
GraphCast 6 7(+5) variable Graph neural network ERA-5

ClimaX 6 7(+3) variable Vision transformers ERA-5
FenGu 5 37(+4) variable Vision transformers ERA-5

Their architecture might not be as crucial as their authors sometimes claim (idiosyncrasy of the ML
community?).1

▶What are their limitations?
▶ Only a few of these research teams made their code public (NVIDIA, Huawei, & Google over the

summer’23) for now,
▶ The models’ outperformance vs the IFS is questionable because of their smoothing effect vs a

high-resolution IFS, but they recently became aware of the caveat [Rasp et al. 2023],
▶ Most importantly they all rely on the ERA-5 (hence the IFS, data assimilation, decades of expertise

acquired by the European meteorologists).

▶How can they/we do genuinely better than the IFS?
−→ Learn from the massive (sparse and noisy) observations!

1[Bocquet 2023; Lguensat 2023]
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Data assimilation and machine learning
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Data assimilation and machine learning

Machine learning for the geosciences with sparse and noisy observations

▶A rigorous Bayesian formalism for this problem2 yields the cost function:

J (p, x0:K) =
1
2

K∑
k=0

∥yk − H(xk)∥2
R−1

k

+
1
2

K∑
k=1

∥xk − M(p, xk−1)∥2
Q−1

k

+ . . .

▶This resembles a typical weak-constraint 4D-Var cost function!

▶The solution is a state trajectory , and a stochastic model :

xk = M(p, xk−1) +
√

Qkdt · ϵk.

▶Machine learning limit
If the physical system is fully and directly observed, i.e. Hk ≡ I, and if the observation errors tend to zero,
i.e. Rk → 0, then the observation term in the cost function is completely frozen and imposes that xk ≃ yk,
so that, in this limit, J (p, x0:K) becomes

J (p) =
1
2

K∑
k=0

∥yk − M (p, yk−1) ∥2
Q−1

k

− ln p(y0, p).

2[Bocquet et al. 2019; Bocquet et al. 2020; Brajard et al. 2020] in the wake of [Hsieh et al. 1998; Abarbanel et al. 2018]
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Data assimilation and machine learning Unification

Machine learning for the geosciences with sparse and noisy observations

▶We need to minimise this cost function on both states and parameters:

J (x0:K , p) =
1
2

K∑
k=0

∥yk − H(xk)∥2
R−1

k

+
1
2

K∑
k=1

∥xk − M (p, xk−1) ∥2
Q−1

k

+ . . . .

▶DA is used to estimate the state and then AI/ML is used to estimate the model (coordinate descent):3

(p⋆,x⋆
0:K)

y0:K

Initialisation

choose p0

DA step

estimate xa
0:K

ML step

update p

p0 xa
0:K

p

DA: 4D-Var, WC 4D-Var, EnKS, IEnKS, etc. and ML: neural networks.

This DA standpoint is remarkable as it allows for noisy and partial observations of the physical system.

3[Bocquet et al. 2020; Brajard et al. 2020]
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Data assimilation and machine learning Unification

Hybrid physical/AI model

▶The hybrid physical/statistical model is a combination of the proxy φ–model and a NN η–model:
▶ Even though geophysical models are not perfect, they are sometimes already quite good (especially in

NWP)!
▶ Instead of building a surrogate model from scratch, we use the DA-ML framework to build a hybrid

surrogate model, with a physical part and a statistical part:4

Physical model φ

Statistical model η(p)

Hybrid model φ⊕ η(p)

▶ In practice, the statistical part is trained to learn the error of the physical model.
▶ In general, it is easier to train a correction model than a full model: we can use smaller NNs and less

training data.

4[Farchi et al. 2021b; Brajard et al. 2021; Farchi et al. 2021a; Farchi et al. 2023].
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Data assimilation and machine learning Neural network subgrid parametrisation

Example of hybrid modelling with a deep learning subgrid parametrisation

▶Marshall-Molteni5 3-layer intermediate QG model: Learning subgrid scale parametrisation at loop order–1 to
perform more accurate forecasts at low resolution (LR) from high resolution simulations (HR).6

Time t = 0

t = 24h

t = 48h

t = 72h

Truth φHR Error with φLR Error with φLR ⊕ ηHR→LR

▶φLR ⊕ ηHR→LR has also successfully been tested with DA.
5[Marshall et al. 1993]
6[Malartic et al. 2022]
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Data assimilation and machine learning AI-based correction of the IFS

Experiments with the IFS

▶ We want to develop a model error correction for the operational IFS [Farchi et al. 2023].

▶ Offline experiments rely on preliminary work by [Bonavita et al. 2020], using the operational analyses produced
by ECMWF between 2017 and 2020.

▶ Our NN is trained to predict the analysis increments, which are available every 12 hours.

▶ Focus on large-scale model errors: we use the data at a low spectral resolution (T21), interpolated in
Gaussian grid with 32 × 63 nodes (moderate oversampling).

2 1 0 1 2
temp. incr. at ground level (K)

→

2 1 0 1 2
temp. incr. at ground level (K)
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Data assimilation and machine learning AI-based correction of the IFS

Neural network architecture

▶Column-based NN for temperature and logarithm of surface pressure:

▶ In the architecture above, the number of parameters is small (∼ 7 × 104) compared to the dimension of the
control vector.

▶Currently tested architecture include extra predictors such as sin/cos of lat, lon, time_of_day and
day_of_year. The number of parameters is still small (up to ∼ ×107) compared to the dimension of the
control vector.
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Data assimilation and machine learning AI-based correction of the IFS

Offline performance of the neural network for tlnsp

▶ Relative MSE (normalised by the MSE of the zero prediction) over the validation data.
▶ Overall, the NN predicts approx. 20% of the analysis increments.
▶ The increments are more predictable in summer than in the winter.
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Data assimilation and machine learning AI-based correction of the IFS

Offline performance of the neural network for tlnsp

▶ Vertical profile and map of MSE over the validation data.
▶ The lower levels are in general more predictable.
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Data assimilation and machine learning AI-based correction of the IFS

First set of online experiments with the IFS

▶ The trained NNs are inserted into the IFS (cycle 48R1) and trained online with our NN 4D-Var.
▶ Scorecard of NN 4D-Var vs WC 4D-Var, for a three-month experiment in winter 2020/2021.

▶ The forecasts are compared to observations and
the operational analysis.

▶ Significant improvements for the geopotential ,
especially in the southern hemisphere.

▶ Degradation of the winds in the tropics.
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Conclusions

Conclusions–1

▶Main messages:
State-of-the-art AI models of the weather seem as accurate as the IFS, albeit much faster!
However, they are all learned from the ERA-5 dataset generated from observations, data
assimilation, and the IFS!
Hence, models/modellers are still dearly needed . . . for now.
But one may envision building an AI data-driven model purely from observation.
Because these data are sparse and noisy, combining DA+ML will be needed!
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Conclusions

Conclusions–2

▶Perspectives:
AI/ML techniques can be applied to other geofluid physics such as sea-ice surrogate
modelling: Schmidt Futures/VESRI/SASIP project7,
Learning generative models for stochastic-like dynamical behaviour (SASIP project),
Other loss function criteria based on reliability and resolution for ensemble forecasting
(ERA-5).

▶Theoretical and applicative challenge:
Develop a similar approach but for convective-scale meteorology ,
Towards more accurate prediction of natural disasters (flash floods, tornadoes, hailstorm) at
finer scale,
Data assimilation+AI+strongly nonlinear dynamics+no ERA-5-like dataset = hard but
rewarding problem.

ERC Synergy proposal DAMLEAP selected for step 3
[KU, ENPC, INP Toulouse, Uni. Bologna] DAMLEAP

7[Finn et al. 2023; Durand et al. 2023]
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Mathematical methods in DA

▶ Introduction of mathematical methods in operational numerical weather prediction:

1950 1975 1998 2005 2015

Objective
Analysis

Optimal Interpolation
3D-Var

4D-Var EnKF Hybrid/EnVar

Optimisation Linear Regression Optimal Control
Kalman Filtering

Monte Carlo

Dynamics Model Forecast Adjoint Model Ensemble Forecast

▶Using increasingly complex mathematical methods and increasingly resolved high-dimensional models.
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Learning dynamics of sea-ice using neural networks

Complex dynamics in sea-ice:

Multifractality
Anisotropy
Stochasticity
(mildly) chaotic

Two NN types:

Unet (multiscale approach)
ResNet (residual NN)

With partial convolutions and SE blocks.

Inputs: sea-ice thickness from
NeXtSIM + ERA5
Forcings: 10m air velocity, 2m air
temperature and sea surface
temperature
For several past timesteps
Outputs: 12h sea-ice thickness
evolution
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