Perturbations Optimales et Prévisibilité

Application à la circulation océanique de l'Atlantique Nord

Florian Sévellec

Mahdi Ben Jelloul, Henk Dijkstra, Sybren Drijfhout, Alexey Fedorov, Agathe Germe, Thierry Huck et Dafydd Stephenson

 $\label{eq:GDR} \begin{array}{l} {\sf GDR} \ll d\acute{e} fis théoriques pour les sciences du climat \gg \\ \hline \\ \underline{Colloque: Prévisibilité \ dans \ les \ sciences} \\ \hline \\ \hline \\ \overline{de \ l'atmosphère, \ les \ océans \ ou \ le \ climat} \end{array}$

Octobre 2023

Perturbations Optimales et Prévisibilité

Florian Sévellec

Structure de la présentation

Introduction

- Perturbations Optimales (LOPs)
- Prévisibilité
 - Impact de la Condition Initiale Océanique
 - Croissance d'Erreur Interne vs Externe
- Une limite « gênante » : les Non-Linéarités
- Conclusions

Perturbations Optimales et Prévisibilité

Florian Sévellec

Changements climatiques et variabilité

 Sur les échelles décennales, ce sont les variations

 internes >> qui dominent;

Obs. NASA-GISS (Sévellec et Drjfhout, *Nature Com.*, 2018) Perturbations Optimales et Prévisibilité

Florian Sévellec

Changements climatiques et variabilité

Tendances locales à 10 ans de la température

 Sur les échelles décennales, ce sont les variations

 internes >> qui dominent;

Obs. NASA-GISS (Sévellec et Drjfhout, *Nature Com.*, 2018)

 Sur les échelles décennales, l'Atlantique Nord et la région
 Pan-Arctique sont des régions clefs.

Modèles climatiques CMIP5 (Sévellec et Sinha, Oxford Enc. of Clim. Sci., 2018) Perturbations Optimales et Prévisibilité

Florian Sévellec

Cellule méridienne de retournement de l'Atl.

Perturbations Optimales et Prévisibilité

Florian Sévellec

Introduction Pert. Optimales Prévisibilité Non-Linéarités Conclusions

Conséquences climatiques :

- Pluie/Sécheresse au Sahel,
- Cyclones tropicaux,
- Climat estival de l'Amérique du nord et de l'Europe.

⇒ Forte demande sociétale pour anticiper les variations de l'AMOC et ses conséquences.

Prévoir l'AMOC pour les prochains 10 ans?

Perturbations Optimales et Prévisibilité

Introduction Pert. Optimales Prévisibilité Non-Linéarités Conclusions

Après ~10 ans l'**Incertitude** est grande : Sensibilité à la condition-initiale \Rightarrow Chaos déterministe!

Prévoir l'AMOC pour les prochains 10 ans?

IPSL-CM5A-LR

Perturbations Optimales et Prévisibilité

Introduction Pert. Optimales Prévisibilité Non-Linéarités Conclusions

Après ~ 10 ans l'**Incertitude** est grande : Sensibilité à la condition-initiale \Rightarrow Chaos déterministe !

⇒ Malgré des avancées qualitatives évidentes, cette question reste ouverte, notamment sur l'aspect quantitatif...

Prévoir l'AMOC pour les prochains 10 ans?

Modèle climatique IPSL-CM5A-LR

Après ~ 10 ans l'**Incertitude** est grande : Sensibilité à la condition-initiale \Rightarrow Chaos déterministe !

⇒ Malgré des avancées qualitatives évidentes, cette question reste ouverte, notamment sur l'aspect quantitatif...

 \Rightarrow Listes de questions scientifiques non-exhaustives :

- Quelle est la barrière de prévisibilité de l'AMOC?
- Quels processus limitent la prévisibilité de l'AMOC?
- Quel est le rôle de la turbulence océanique dans la prévisibilité de l'AMOC ?

Florian Sévellec

Digression Conceptuelle

 \Rightarrow La Croissance d'Erreur peut avoir deux formes :

Stochastique – Hasselmann (1976)

 $d |\mathbf{u}\rangle = \mathbf{A}(t) |\mathbf{u}\rangle dt + \mathbf{L}d |\mathbf{W}(t)\rangle \Rightarrow du = -\lambda u dt + \sigma dW.$

Perturbations Optimales et Prévisibilité Elorian Sévellec

Introduction Pert. Optimales Prévisibilité Non-Linéarités Conclusions

► Déterministe – Poincaré (1892) et Lorenz (1963) $d_t |\mathbf{U}\rangle = \mathcal{N}(|\mathbf{U}\rangle, t) \Rightarrow |\mathbf{U}\rangle = |\Omega, \Delta_{BT}S, \Delta_{NS}S\rangle$

Digression Conceptuelle

 \Rightarrow La **Croissance d'Erreur** peut avoir deux formes :

Stochastique – Hasselmann (1976)

 $d |\mathbf{u}\rangle = \mathbf{A}(t) |\mathbf{u}\rangle dt + \mathbf{L}d |\mathbf{W}(t)\rangle \Rightarrow du = -\lambda u dt + \sigma dW.$

Sévellec et Fedorov (J. Climate, 2014) 6/24

Perturbations

Optimales et Prévisibilité

Elorian Sévellec

Introduction

Peut-on prévoir l'AMOC

⇒ Deux stratégies complémentaire pour étudier la prévisibilité :

Pragmatique – Simulations d'Ensemble

- + Facile à mettre en place avec les modèles actuels;
- + Pas d'approximation a priori de la dynamique;
- Difficulté de convergence quantitative
 ⇒ Échantillonage de la condition initiale.
- Coûteux numériquement.

Théorique – Perturbations Optimales

- + Cadre théorique bien posé
 - \Rightarrow Assure la chaîne de causalité;
- + Caractérise la sensibilité à la condition initiale
 - \Rightarrow Attribution Dynamique;
- Besoin du modèle « adjoint » ;
- A priori limité à une dynamique laminaire et linéaire.

Perturbations Optimales et Prévisibilité

Florian Sévellec

Structure de la présentation

Introduction

Perturbations Optimales (LOPs)

- Prévisibilité
 - Impact de la Condition Initiale Océanique
 - Croissance d'Erreur Interne vs Externe
- Une limite « gênante » : les Non-Linéarités
- Conclusions

Perturbations Optimales et Prévisibilité

Florian Sévellec

Introduction

- Pert. Optimales Prévisibilité
- Non-Linéarité

Conclusions

La perturbation qui induit le plus de changement !

 \Rightarrow Caractérise la sensibilité à la condition initiale.

[Farrell et loannou (1996a et b), Tziperman et lannou (2002), Zanna and Tziperman (2005 et 08), etc.]

Système d'équations – Évolution de l'état du système ($|\mathbf{U}\rangle$) $d_t |\mathbf{U}\rangle = \mathcal{N}(|\mathbf{U}\rangle, t).$

Linéarisation – dynamique de la perturbation (|u)) :

$$egin{aligned} &d_t \left| \mathbf{u}
ight
angle = \mathbf{A}(t) \left| \mathbf{u}
ight
angle, \, \mathrm{où} \, \mathbf{A}(t) = \left| rac{\partial \mathcal{N}}{\partial \left| \mathbf{U}
ight
angle}
ight|_{\left| \overline{\mathbf{U}}
ight
angle} \, \mathrm{et} \, \left| \mathbf{U}
ight
angle = \left| \overline{\mathbf{U}}
ight
angle + \left| \mathbf{u}
ight
angle. \ &\Rightarrow \left| \mathbf{u}(t)
ight
angle = \mathbf{M}(t, t_0) \left| \mathbf{u}(t_0)
ight
angle. \end{aligned}$$

Maximisation sous contrainte :

 $\mathcal{L} = \langle \mathsf{F} | \mathsf{u}(t)
angle - \gamma \left(\langle \mathsf{u}(t_0) | \mathsf{S} | \mathsf{u}(t_0)
angle - \epsilon^2
ight).$

Perturbations Optimales et Prévisibilité

Florian Sévellec

ntroduction

Pert. Optimales Prévisibilité Non-Linéarités Conclusions

La perturbation qui induit le plus de changement !

 \Rightarrow Caractérise la sensibilité à la condition initiale.

[Farrell et Ioannou (1996a et b), Tziperman et Iannou (2002), Zanna and Tziperman (2005 et 08), etc.]

Mathématiquement :

Système d'équations – Évolution de l'état du système ($|\mathbf{U}\rangle$) : $d_t |\mathbf{U}\rangle = \mathcal{N}(|\mathbf{U}\rangle, t).$

Linéarisation – dynamique de la perturbation (|u)) :

$$egin{aligned} d_t \left| \mathbf{u}
ight
angle &= \mathbf{A}(t) \left| \mathbf{u}
ight
angle, \, \mathrm{ou} \, \mathbf{A}(t) = \left| rac{\partial \mathcal{N}}{\partial \left| \mathbf{U}
ight
angle}
ight|_{\left| \overline{\mathbf{U}}
ight
angle} \, \mathrm{et} \, \left| \mathbf{U}
ight
angle &= \left| \overline{\mathbf{U}}
ight
angle + \left| \mathbf{u}
ight
angle. \\ &\Rightarrow \left| \mathbf{u}(t)
ight
angle &= \mathbf{M}(t, t_0) \left| \mathbf{u}(t_0)
ight
angle. \end{aligned}$$

Maximisation sous contrainte :

$$\mathcal{L} = \langle \mathsf{F} | \mathsf{u}(t)
angle - \gamma \left(\langle \mathsf{u}(t_0) | \mathsf{S} | \mathsf{u}(t_0)
angle - \epsilon^2
ight).$$

Perturbations Optimales et Prévisibilité

Florian Sévellec

ntroduction

Pert. Optimales Prévisibilité Non-Linéarités Conclusions

La perturbation qui induit le plus de changement !

 \Rightarrow Caractérise la sensibilité à la condition initiale.

[Farrell et Ioannou (1996a et b), Tziperman et Iannou (2002), Zanna and Tziperman (2005 et 08), etc.]

Mathématiquement :

- Système d'équations Évolution de l'état du système ($|\mathbf{U}\rangle$) : $d_t |\mathbf{U}\rangle = \mathcal{N}(|\mathbf{U}\rangle, t).$
- ▶ Linéarisation dynamique de la perturbation $(|\mathbf{u}\rangle)$:

$$egin{aligned} d_t \left| \mathbf{u}
ight
angle &= \mathbf{A}(t) \left| \mathbf{u}
ight
angle, \, \mathrm{où} \, \mathbf{A}(t) = \left| rac{\partial \mathcal{N}}{\partial \left| \mathbf{U}
ight
angle}
ight|_{\left| \overline{\mathbf{U}}
ight
angle} \, \mathrm{et} \, \left| \mathbf{U}
ight
angle &= \left| \overline{\mathbf{U}}
ight
angle + \left| \mathbf{u}
ight
angle. \ &\Rightarrow \left| \mathbf{u}(t)
ight
angle &= \mathbf{M}(t, t_0) \left| \mathbf{u}(t_0)
ight
angle. \end{aligned}$$

Maximisation sous contrainte :

$$\mathcal{L} = \langle \mathsf{F} | \mathsf{u}(t)
angle - \gamma \left(\langle \mathsf{u}(t_0) | \mathsf{S} | \mathsf{u}(t_0)
angle - \epsilon^2
ight).$$

Perturbations Optimales et Prévisibilité

Florian Sévellec

ntroduction

Pert. Optimales Prévisibilité Non-Linéarités

La perturbation qui induit le plus de changement !

 \Rightarrow Caractérise la sensibilité à la condition initiale.

[Farrell et Ioannou (1996a et b), Tziperman et Iannou (2002), Zanna and Tziperman (2005 et 08), etc.]

Mathématiquement :

- Système d'équations Évolution de l'état du système ($|\mathbf{U}\rangle$) : $d_t |\mathbf{U}\rangle = \mathcal{N}(|\mathbf{U}\rangle, t).$
- ▶ Linéarisation dynamique de la perturbation $(|\mathbf{u}\rangle)$:

$$egin{aligned} &d_t \left| \mathbf{u}
ight
angle = \mathbf{A}(t) \left| \mathbf{u}
ight
angle, \, \mathrm{où} \, \mathbf{A}(t) = \left. rac{\partial \mathcal{N}}{\partial \left| \mathbf{U}
ight
angle}
ight|_{\left| \overline{\mathbf{U}}
ight
angle} \, \mathrm{et} \, \left| \mathbf{U}
ight
angle = \left| \overline{\mathbf{U}}
ight
angle + \left| \mathbf{u}
ight
angle. \ &\Rightarrow \left| \mathbf{u}(t)
ight
angle = \mathbf{M}(t, t_0) \left| \mathbf{u}(t_0)
ight
angle. \end{aligned}$$

Maximisation sous contrainte : Dynamique linéaire !

$$\mathcal{L} = \langle \mathsf{F} | \mathsf{u}(t)
angle - \gamma \left(\langle \mathsf{u}(t_0) | \mathsf{S} | \mathsf{u}(t_0)
angle - \epsilon^2
ight).$$

Perturbations Optimales et Prévisibilité

Florian Sévellec

ntroduction

Pert. Optimales Prévisibilité Non-Linéarités

La perturbation qui induit le plus de changement !

 \Rightarrow Caractérise la sensibilité à la condition initiale.

[Farrell et Ioannou (1996a et b), Tziperman et Iannou (2002), Zanna and Tziperman (2005 et 08), etc.]

Mathématiquement :

- Système d'équations Évolution de l'état du système ($|\mathbf{U}\rangle$) : $d_t |\mathbf{U}\rangle = \mathcal{N}(|\mathbf{U}\rangle, t).$
- ▶ Linéarisation dynamique de la perturbation $(|\mathbf{u}\rangle)$:

$$egin{aligned} &d_t \left| \mathbf{u}
ight
angle = \mathbf{A}(t) \left| \mathbf{u}
ight
angle, \, \mathrm{où} \, \mathbf{A}(t) = \left| rac{\partial \mathcal{N}}{\partial \left| \mathbf{U}
ight
angle}
ight|_{\left| \overline{\mathbf{U}}
ight
angle} \, \mathrm{et} \, \left| \mathbf{U}
ight
angle = \left| \overline{\mathbf{U}}
ight
angle + \left| \mathbf{u}
ight
angle. \ &\Rightarrow \left| \mathbf{u}(t)
ight
angle = \mathbf{M}(t, t_0) \left| \mathbf{u}(t_0)
ight
angle. \end{aligned}$$

Maximisation sous contrainte :

$$\mathcal{L} = \langle \mathsf{F} | \mathsf{u}(t)
angle - \gamma \left(\langle \mathsf{u}(t_0) | \mathsf{S} | \mathsf{u}(t_0)
angle - \epsilon^2
ight).$$

Perturbations Optimales et Prévisibilité

Florian Sévellec

ntroduction

Pert. Optimales Prévisibilité Non-Linéarités

La perturbation qui induit le plus de changement !

 \Rightarrow Caractérise la sensibilité à la condition initiale.

[Farrell et Ioannou (1996a et b), Tziperman et Iannou (2002), Zanna and Tziperman (2005 et 08), etc.]

Mathématiquement :

- Système d'équations Évolution de l'état du système ($|\mathbf{U}\rangle$) : $d_t |\mathbf{U}\rangle = \mathcal{N}(|\mathbf{U}\rangle, t).$
- ▶ Linéarisation dynamique de la perturbation $(|\mathbf{u}\rangle)$:

$$egin{aligned} &d_t \left| \mathbf{u}
ight
angle = \mathbf{A}(t) \left| \mathbf{u}
ight
angle, \, \mathrm{où} \, \mathbf{A}(t) = \left| rac{\partial \mathcal{N}}{\partial \left| \mathbf{U}
ight
angle}
ight|_{\left| \overline{\mathbf{U}}
ight
angle} \, \mathrm{et} \, \left| \mathbf{U}
ight
angle = \left| \overline{\mathbf{U}}
ight
angle + \left| \mathbf{u}
ight
angle. \ &\Rightarrow \left| \mathbf{u}(t)
ight
angle = \mathbf{M}(t, t_0) \left| \mathbf{u}(t_0)
ight
angle. \end{aligned}$$

Maximisation sous contrainte :

$$\mathcal{L} = \langle \mathbf{F} | \mathbf{u}(t)
angle - \gamma \left(\langle \mathbf{u}(t_0) | \mathbf{S} | \mathbf{u}(t_0)
angle - \epsilon^2
ight).$$

 $\Rightarrow \text{LOP}: \text{Solution explicite ne nécessitant que l' & adjoint } \gg !$

$$\Rightarrow |\mathbf{u}^{\text{opt}}(t_0)\rangle = \pm \epsilon \frac{\mathbf{S}^{-1} \mathbf{M}^{\dagger}(t_0, t) |\mathbf{F}\rangle}{\sqrt{\langle \mathbf{F} | \mathbf{M}(t, t_0) \mathbf{S}^{-1} \mathbf{M}^{\dagger}(t_0, t) |\mathbf{F}\rangle}}.$$

Sévellec et al (J. Phys. Oceanogr., 2007)

Perturbations Optimales et Prévisibilité

Florian Sévellec

ntroductior

Pert. Optimales Prévisibilité Non-Linéarités

8/24

Digression Méthodologique

Qu'est-ce qu'un « adjoint »?

River Pollutant Analogy Where does the pollutant go? "CLASSICAL" FORWARD ANALYSIS Known Source **Identified Actual Impact** Where does the pollutant come from? **Identified Likely Source** "BACKWARD" ADJOINT ANALYSIS Known Impact

Optimales et Prévisibilité Florian Sévellec Introduction Pert. Optimales

Perturbations

Prévisibilité Non-Linéarités Conclusions

Application à un GCM océanique laminaire

• Perturbation optimale – LOP – $|\mathbf{u}^{\text{opt}}(t_0)\rangle$:

⇒ Comme attendu (géostrophie) la diférence de densité Est-Ouest induit un changement optimale de l'AMOC! Perturbations

Optimales et Prévisibilité Elorian Sévellec

Application à un GCM océanique laminaire LOP de l'AMOC à 50°N dans NEMO-ORCA2 :

Impact maximum p/p au délai ($\tau = t - t_0$) :

Perturbations

Optimales et Prévisibilité

Structure de la présentation

Introduction

Perturbations Optimales (LOPs)

- Prévisibilité
 - Impact de la Condition Initiale Océanique
 - Croissance d'Erreur Interne vs Externe
- Une limite « gênante » : les Non-Linéarités
- Conclusions

Perturbations Optimales et Prévisibilité

Florian Sévellec

ntroductior

Pert. Optimales

Prévisibilité

Non-Linéarités

Conclusions

Théorie de la Prévisibilité - Solution Générale

 $\left| \mathbf{u}\left(t
ight)
ight
angle =\left[\mathbf{A}\left(t
ight) \left| \mathbf{u}\left(t
ight)
ight
angle +\left| \mathbf{X}\left(t
ight)
ight
angle
ight] dt,$

où $|\textbf{X}\rangle$ est un bruit corrélé et $\langle\textbf{F}|\textbf{u}\rangle$ est l'AMOC.

Perturbations Optimales et Prévisibilité

Florian Sévellec

ntroduction

Pert. Optimales

Prévisibilité

Non-Linéarités

Conclusions

Théorie de la Prévisibilité – Solution Générale $|\mathbf{u}(t)\rangle = [\mathbf{A}(t) |\mathbf{u}(t)\rangle + |\mathbf{X}(t)\rangle] dt$.

où $|\textbf{X}\rangle$ est un bruit corrélé et $\langle\textbf{F}|\textbf{u}\rangle$ est l'AMOC.

$$\operatorname{var}\left[\langle \mathsf{F}|\mathbf{u}_{t_{0}}(t_{1})\rangle\right] = \langle \mathsf{F}|\mathsf{M}(t_{1},t_{0})\boldsymbol{\Sigma}_{\mathrm{ini}}\mathsf{M}^{\dagger}(t_{0},t_{1})|\mathsf{F}\rangle$$

$$+ \int_{t_{0}}^{t_{1}} \int_{t_{0}}^{t_{1}} \langle \mathsf{F}|\mathsf{M}(t_{1},t)e^{-\boldsymbol{\lambda}_{f}t}\boldsymbol{\Sigma}_{f}e^{-\boldsymbol{\lambda}_{f}^{\dagger}s}\mathsf{M}^{\dagger}(s,t_{1})|\mathsf{F}\rangle dt ds$$

$$+ \int_{t_{0}}^{t_{1}} \int_{t_{0}}^{t_{1}} \langle \mathsf{F}|\mathsf{M}(t_{1},t)e^{-\boldsymbol{\lambda}_{EB}t}\boldsymbol{\Sigma}_{EB}e^{-\boldsymbol{\lambda}_{EB}^{\dagger}s}\mathsf{M}^{\dagger}(s,t_{1})|\mathsf{F}\rangle dt ds$$

$$+ \int_{t_{0}}^{t_{1}} \int_{t_{0}}^{t_{1}} \langle \mathsf{F}|\mathsf{M}(t_{1},t)e^{-\boldsymbol{\lambda}_{MB}t}\boldsymbol{\Sigma}_{MB}e^{-\boldsymbol{\lambda}_{MB}^{\dagger}s}\mathsf{M}^{\dagger}(s,t_{1})|\mathsf{F}\rangle dt ds.$$

- Σ_{ini} : propriété spatiale de l'incertitude de la condition initiale océanique ,
- Σ₁ et λ₁ : propriété spatiale et temporelle du bruit de flottabilité océanique interne,
- Σ_{EB} et λ_{EB} : propriété spatiale et temporelle du bruit de flottabilité atmosphérique externe,
- Σ_{EM} et λ_{EM} : propriété spatiale et temporelle du bruit de moment atmosphérique externe.

Perturbations Optimales et Prévisibilité

Florian Sévellec

Théorie de la Prévisibilité – Solution Générale $|\mathbf{u}(t)\rangle = [\mathbf{A}(t) |\mathbf{u}(t)\rangle + |\mathbf{X}(t)\rangle] dt$,

où $|\textbf{X}\rangle$ est un bruit corrélé et $\langle\textbf{F}|\textbf{u}\rangle$ est l'AMOC.

$$\begin{aligned} \operatorname{var}\left[\langle\mathsf{F}|\mathbf{u}_{t_{0}}(t_{1})\rangle\right] &= \langle\mathsf{F}|\mathsf{M}(t_{1},t_{0})\boldsymbol{\Sigma}_{\operatorname{ini}}\mathsf{M}^{\dagger}(t_{0},t_{1})|\mathsf{F}\rangle \\ &+ \int_{t_{0}}^{t_{1}}\int_{t_{0}}^{t_{1}}\langle\mathsf{F}|\mathsf{M}(t_{1},t)e^{-\boldsymbol{\lambda}_{f}t}\boldsymbol{\Sigma}_{f}e^{-\boldsymbol{\lambda}_{f}^{\dagger}s}\mathsf{M}^{\dagger}(s,t_{1})|\mathsf{F}\rangle\,dt\,ds \\ &+ \int_{t_{0}}^{t_{1}}\int_{t_{0}}^{t_{1}}\langle\mathsf{F}|\mathsf{M}(t_{1},t)e^{-\boldsymbol{\lambda}_{EB}t}\boldsymbol{\Sigma}_{EB}e^{-\boldsymbol{\lambda}_{EB}^{\dagger}s}\mathsf{M}^{\dagger}(s,t_{1})|\mathsf{F}\rangle\,dt\,ds \\ &+ \int_{t_{0}}^{t_{1}}\int_{t_{0}}^{t_{1}}\langle\mathsf{F}|\mathsf{M}(t_{1},t)e^{-\boldsymbol{\lambda}_{MB}t}\boldsymbol{\Sigma}_{MB}e^{-\boldsymbol{\lambda}_{MB}^{\dagger}s}\mathsf{M}^{\dagger}(s,t_{1})|\mathsf{F}\rangle\,dt\,ds. \end{aligned}$$

- Σ_{ini} : propriété spatiale de l'incertitude de la condition initiale océanique ,
- Σ₁ et λ₁ : propriété spatiale et temporelle du bruit de flottabilité océanique interne,
- Σ_{EB} et λ_{EB} : propriété spatiale et temporelle du bruit de flottabilité atmosphérique externe,
- Σ_{EM} et λ_{EM} : propriété spatiale et temporelle du bruit de moment atmosphérique externe.

 $\Rightarrow \text{ En connaissant la propriété des bruits, on obtient la variance via} I'utilisation de l' << adjoint >> (M^{\dagger} |F\rangle).$

 \Rightarrow Nous avons une **Attribution Dynamique** de la variance ! Sévellec *et al* (*Clim. Dyn.*, 2018) et Stephenson et Sévellec *et al* (*J. Climate*, 2021)

Structure de la présentation

Introduction

- Perturbations Optimales (LOPs)
- Prévisibilité
 - Impact de la Condition Initiale Océanique
 - Croissance d'Erreur Interne vs Externe
- Une limites « gênante » : les Non-Linéarités
- Conclusions

Perturbations Optimales et Prévisibilité

Florian Sévellec

Impact de la Condition Initiale

Expérience :

- Modèle « adjoint » NEMO et NEMOTAM en configuration ORCA2,
- Incertitude liée à la Condition Initiale Océanique ddérive des incertitudes typiques d'Argo.
- Flux Atmosphériques de Flottabilité diagnostiqués du modèle de l'IPSL;
- ► AMOC mesurée à 50°N.

Contexte méthodologique :

⇒ La réponse d'un **océan laminaire** soumis à une incertitude initiale océanique et un bruit stochastique atmosphérique. Perturbations Optimales et Prévisibilité

Florian Sévellec

Impact de la Condition Initiale

- Incertitude de la condition initiale
- Forçage de flottabilité externe

Résultats :

- La condition initial domine l'erreur en interannuel
- Le forçage externe domine l'erreur en multi-décennale
- Il y a un sweet-spot de prévisibilité de l'AMOC à 5-10 ans où

l'erreur liée à la condition initial a diminué;

l'erreur liée au forçage externe n'a pas encore augmenté.

Perturbations Optimales et Prévisibilité

Elorian Sévellec

Prévisibilité

Réseau optimal de mesures

Lien avec les Perturbations Optimales :

$$\sigma_{\rm ini}^2 = \sigma_{\rm opt}^2 \left(\frac{\delta}{\epsilon}\right)^4$$

- ϵ est la normalisation globale de la LOP ;
- $\blacktriangleright~\delta$ est une re-normalisation locale lié à l'incertitude initiale.

Les bornes théoriques de la prévisibilité :

$$1 - \frac{\sigma_{\rm sto}^2 + \sigma_{\rm opt}^2}{\sigma_{\infty}^2} \le PP \le 1 - \frac{\sigma_{\rm sto}^2}{\sigma_{\infty}^2}$$

Perturbations Optimales et Prévisibilité

Florian Sévellec

Structure de la présentation

Introduction

- Perturbations Optimales (LOPs)
- Prévisibilité
 - Impact de la Condition Initiale Océanique
 - Croissance d'Erreur Interne vs Externe
- Une limite « gênante » : les Non-Linéarités
- Conclusions

Perturbations Optimales et Prévisibilité

Florian Sévellec

Interne vs Externe

Expérience :

- Modèle « adjoint » NEMO et NEMOTAM en configuration ORCA2,
- Flux Océaniques de Flottabilité diagnostiqués du modèle NEMO-ORCA025.
- Flux Atmosphériques de Flottabilité et de Moment diagnostiqués du modèle de l'IPSL;
- ► AMOC subpolaire 55°N et subtropicale 26°N.

Contexte méthodologique :

⇒ La réponse d'un océan laminaire soumis à un bruit stochastique océanique – la turbulence de meso-échelle océanique – et un bruit stochastique atmosphérique – la turbulence synoptique atmosphérique. Perturbations Optimales et Prévisibilité

Florian Sévellec

Interne vs Externe

- Flottabilité Interne
- Flottabilité Externe
- Moment Externe

- Les Flux de chaleur et d'eau douce sont négligeables...
- Subtropicale : 50/50 entre Tourbillons Océaniques/Vent.
- Subpolaire : Le Vent (zonal) domine largement !

Stephenson et Sévellec (J. Climate, 2021)

Perturbations

Optimales et Prévisibilité

Elorian Sévellec

Prévisibilité

- Le Vent Zonal a un impact Local.
- La Turbulence Océanique est lié au Gulf-Stream et à la Dérive Nord Atlantique.

Stephenson et Sévellec (J. Climate, 2021) 18/24

Structure de la présentation

Introduction

- Perturbations Optimales (LOPs)
- Prévisibilité
 - Impact de la Condition Initiale Océanique
 - Croissance d'Erreur Interne vs Externe
- Une limite « gênante » : les Non-Linéarités
- Conclusions

Perturbations Optimales et Prévisibilité

Florian Sévellec

Introduction Pert. Optimales Prévisibilité Non-Linéarités

Conclusions

Une limite « gênante »...

Les Non-Linéarités :

- Que se passe-t-il si la perturbation n'est plus faible?
- Que se passe-t-il si le système résoud explicitement les tourbillons océaniques ?

19/24

Perturbations Optimales et Prévisibilité

Florian Sévellec

Ralentissement de l'AMOC de 2009-2010 :

\Rightarrow Existe-t-il des précurseurs océaniques à l'événement de 2009-2010?

<u>Méthode :</u>

- Peut-on induire un tel ralentissement?
- Perturbations Non-linéaires Optimales (NOPs) !
 - Une méthode non-linéaire itérative
 - « Cumulant » les Perturbations Linéaires Optimales;
 - Remontant la chaîne de causalité (« adjoint »).
 - Unicité de la solution.

Perturbations Optimales et Prévisibilité

Florian Sévellec

Une Méthode Non-Linéaire Itérative basée sur les LOPs :

Sévellec et Fedorov (J. Climate, 2013)

Perturbations

Optimales et Prévisibilité

Une Méthode Non-Linéaire Itérative basée sur les LOPs :

Étape d'une itération :

- 1. Calcul de la LOP via l'« adjoint » Linéaire ;
- 2. Calcul de l'amplitude de la LOP Faiblement Non-Linéaire
- 3. Application de la LOP au modèle complet Non-Linéaire

Perturbations

Optimales et Prévisibilité

Une Méthode Non-Linéaire Itérative basée sur les LOPs :

Étape d'une itération :

- 1. Calcul de la LOP via l'« adjoint » Linéaire ;
- 2. Calcul de l'amplitude de la LOP Faiblement Non-Linéaire
- 3. Application de la LOP au modèle complet Non-Linéaire

Perturbations

Optimales et Prévisibilité

Les Non-Linéarités (Thèse de D. Stephenson, 2021, UoS) Configuration :

- NEMO-ORCA025 : « autorisant » les tourbillons ;
- Vents réalistes.
- Flux « climatologiques » : pas de phasage de la variabilité.

Florian Sévellec

Les Non-Linéarités (Thèse de D. Stephenson, 2021, UoS) Configuration :

- NEMO-ORCA025 : « autorisant » les tourbillons ;
- Vents réalistes.
- Flux « climatologiques » : pas de phasage de la variabilité.

\Rightarrow On peut générer un événement équivalent à 2009-2010.

- La Perturbation Linéaire Optimale est fausse...
- Convergence rapide : 10 itérations !

Les Non-Linéarités (Thèse de D. Stephenson, 2021, UoS)

Anomalie induisant le plus efficacement l'évènement :

- Rôle de l'océan profond.
- Efficacité de la méthode non-linéaire :
 - Filtrant >> les tourbillons;
 - « Cumulant » la grande échelle.

Perturbations

Optimales et Prévisibilité

Conclusions

- Des résultats méthodologiques : Dans un cadre réaliste et avec l'état-de-l'art des modèles océaniques on a caractérisé
 - 1. Les Perturbations Optimales Linéaires : LOPs;
 - 2. Attribution Dynamique des sources d'incertitude;
 - 3. Les Perturbations Optimales Non-linéaires : NOPs.
- Des résultats physiques :
 - Un sweet-spot de prévisibilité de l'AMOC à 5-10 ans
 - Réseau optimal d'observations situé dans le gyre subpolaire;
 - Rôle du vent zonal sur la Croissance d'Erreur de l'AMOC;
 - Rôle prépondérant de l'océan profond dans le ralentissement transitoire de l'AMOC en 2009-2010.
- Une suite logique les Équations du Moment :
 - Lacune En se focalisant sur la grande échelle, on a implicitement considéré l'équilibre géostrophique des perturbations...
 - Possibilité Quelle est la dynamique de la Croissance d'Erreur des vitesses ?

Perturbations Optimales et Prévisibilité

Florian Sévellec

Conclusions

- Des résultats méthodologiques : Dans un cadre réaliste et avec l'état-de-l'art des modèles océaniques on a caractérisé
 - 1. Les Perturbations Optimales Linéaires : LOPs;
 - 2. Attribution Dynamique des sources d'incertitude ;
 - 3. Les Perturbations Optimales Non-linéaires : NOPs.
- Des résultats physiques :
 - Un sweet-spot de prévisibilité de l'AMOC à 5-10 ans;
 - Réseau optimal d'observations situé dans le gyre subpolaire;
 - Rôle du vent zonal sur la Croissance d'Erreur de l'AMOC;
 - Rôle prépondérant de l'océan profond dans le ralentissement transitoire de l'AMOC en 2009-2010.
- Une suite logique les Équations du Moment :
 - Lacune En se focalisant sur la grande échelle, on a implicitement considéré l'équilibre géostrophique des perturbations...
 - Possibilité Quelle est la dynamique de la Croissance d'Erreur des vitesses ?

Perturbations Optimales et Prévisibilité

Florian Sévellec

Conclusions

- Des résultats méthodologiques : Dans un cadre réaliste et avec l'état-de-l'art des modèles océaniques on a caractérisé
 - 1. Les Perturbations Optimales Linéaires : LOPs;
 - 2. Attribution Dynamique des sources d'incertitude ;
 - 3. Les Perturbations Optimales Non-linéaires : NOPs.
- Des résultats physiques :
 - Un sweet-spot de prévisibilité de l'AMOC à 5-10 ans;
 - Réseau optimal d'observations situé dans le gyre subpolaire;
 - Rôle du vent zonal sur la Croissance d'Erreur de l'AMOC;
 - Rôle prépondérant de l'océan profond dans le ralentissement transitoire de l'AMOC en 2009-2010.
- Une suite logique les Équations du Moment :
 - Lacune En se focalisant sur la grande échelle, on a implicitement considéré l'équilibre géostrophique des perturbations...
 - Possibilité Quelle est la dynamique de la Croissance d'Erreur des vitesses?

Perturbations Optimales et Prévisibilité

Florian Sévellec

Merci pour votre attention !

Perturbations Optimales et Prévisibilité

Florian Sévellec